Zur Modulseite PDF generieren

#51077 / #1

Seit WiSe 2023/24

English

Applied Deep Learning in Engineering
Angewandtes Deep Learning im Ingenieurswesen

6

Stender, Merten

Benotet

Schriftliche Prüfung

English

Zugehörigkeit


Fakultät V

Institut für Maschinenkonstruktion und Systemtechnik (IMS)

35352200 FG Cyber-Physical-Systems in Mechanical Engineering

Maschinenbau

Kontakt


H 66

Stender, Merten

merten.stender@tu-berlin.de

Lernergebnisse

Engineering disciplines now widely use machine learning and deep learning for system monitoring, fault detection, data-driven decision support, and harnessing big data opportunities. This module teaches advanced deep learning concepts and their Python implementation using standard libraries. Real-world engineering examples are employed to emphasize comprehension of crucial concepts in feed-forward, convolutional, and recurrent deep neural networks, including sequence classification, image classification, and object recognition. Upon successful completion of the module, students will acquire the following: Knowledge: - Advanced understanding of (un-)supervised deep learning methods, including their structure and functionality. - Familiarity with error backpropagation, various optimization algorithms, and their unique characteristics. - Proficiency in architectural design and conception of deep learning methods. - Knowledge of essential neural training parameters, regularization techniques, and training strategies. Skills: - Statistical characterization and evaluation of large, high-dimensional datasets. - Handling unstructured data using convolutional and recurrent neural networks. - Effective visualization of large, high-dimensional datasets. - Implementation of core operations and key neural architectures from scratch. - Utilization of popular programming libraries in Python. Competencies: - Exploratory analysis of extensive unstructured datasets. - Feature engineering for sequential data and transformation into structured formats. - Selection of appropriate deep learning neural architectures for structured and unstructured data. - Evaluation of predictions, assessing bias and variance in complex deep neural networks. - Assessment of risks, environmental impact, and technological implications. The course teaches 60% knowledge & understanding, 20% analysis & methodology, and 20% programming.

Lehrinhalte

- Introduction to data-driven methods and their applications in engineering. - Supervised and unsupervised learning - Data types and data type conversion for data-driven modeling - Deep feed-forward artificial neural networks - Gradient descent methods, error backpropagation, and training processes - Families of convolutional neural networks - Families of recurrent neural networks - Data-driven computer vision: image classification and object detection - Evaluation and assessment of deep learning methods - Practical examples from engineering disciplines - Programming tasks and implementation in the Python programming language - Risk, environmental, and technological impact assessment

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Applied Deep Learning in EngineeringUEWiSe/SoSeen2
Applied Deep Learning in EngineeringVLWiSe/SoSeen2

Arbeitsaufwand und Leistungspunkte

Applied Deep Learning in Engineering (UE):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)

Applied Deep Learning in Engineering (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

- Lecture: Class to convey the course content and contexts as frontal teaching with many examples from practice and interactive questions. - Exercise: practical and guided implementation of programming tasks in the programming language Python as well as exercises in small groups to deepen and apply the lecture material. - Exam: written digital exam

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

- Basic statistics - Advanced analysis (partial differentiation, gradient calculation) and linear algebra (matrix and tensor multiplication, projection methods, matrix decomposition). - Basic concepts and methods of sequential/object-oriented programming - Proficiency in the programming language Python

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Written exam

Sprache(n)

English

Dauer/Umfang

90min

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Registration for the examination according to AllgStuPO in QISPOS or Moses. Access to teaching material and registration for the course via the e-learning platform ISIS.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar

 

Literatur

Empfohlene Literatur
Keine empfohlene Literatur angegeben

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Biomedizinische Technik (M. Sc.)14WiSe 2024/25SoSe 2025
Computational Engineering Science (Informationstechnik im Maschinenwesen) (B. Sc.)14WiSe 2023/24SoSe 2025
Computational Engineering Science (Informationstechnik im Maschinenwesen) (M. Sc.)12WiSe 2024/25SoSe 2025
Fahrzeugtechnik (M. Sc.)14WiSe 2023/24SoSe 2025
Luft- und Raumfahrttechnik (M. Sc.)14WiSe 2023/24SoSe 2025
Maschinenbau (B. Sc.)15WiSe 2023/24SoSe 2025
Maschinenbau (M. Sc.)15WiSe 2023/24SoSe 2025
Physikalische Ingenieurwissenschaft (B. Sc.)214WiSe 2023/24SoSe 2025
Physikalische Ingenieurwissenschaft (M. Sc.)26SoSe 2024SoSe 2025
Technomathematik (M. Sc.)14WiSe 2023/24SoSe 2025
Verkehrswesen (B. Sc.)14WiSe 2023/24SoSe 2025
Wirtschaftsingenieurwesen (M. Sc.)11SoSe 2025SoSe 2025

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe