Zur Modulseite PDF generieren

#40515 / #10

Seit WiSe 2022/23

English

Brain-Computer Interfacing (basic)

6

Blankertz, Benjamin

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34355200 FG S-Professur Neurotechnologie

Keine Angabe

Kontakt


MAR 4-3

Miklody, Daniel

benjamin.blankertz@tu-berlin.de

Lernergebnisse

Students know the essential concepts of Brain-Computer Interfacing (BCI). They are capable of applying methods of biomedical signal processing and single-trial classification to neural data. They can provide an interpretation of the outcome of their analysis in a statistical as well as in a neurophysiological manner. Moreover, they are aware of potential issues imposed by machine learning applications, e.g., due to biases in the database.

Lehrinhalte

Approaches to Brain-Computer Interfacing (BCI); Event-related potentials (ERPs); Spatial filters; Multivariate analysis of brain signals; Single-trial classification of spatio-temporal features; Regularized discriminant analysis (RDA); The linear model (forward and backward) of EEG; Interpretation of spatial patterns and filters; Modulation of spontaneous brain rhythms; Event-related synchronization and desynchronization (ERS, ERD); Common spatial pattern (CSP) Analysis; Classification of spatio-spectral features; Signal decomposistion methods; Supervised and unsupervised methods of adaptation in the classification of EEG; Experimental design

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Brain-Computer InterfacingIV3435 L 501WiSeKeine Angabe4

Arbeitsaufwand und Leistungspunkte

Brain-Computer Interfacing (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendence15.04.0h60.0h
Preparation, reworking15.02.0h30.0h
Preparing for exams2.015.0h30.0h
Solving exercises10.06.0h60.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

This integrated course consists of a lecture (mainly teacher-centred, with some period of group work) and assignments. The latter require independently solving programming exercises under the guidance of a tutor.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

* Mandatory: programming skills in python; background in mathematics, in particular linear algebra and probability theory. * Helpful, but not obligatory: Basic knowledge in signal processing and machine learning.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
Deliverable assessment: 10 assignments20praktisch~ 6h each
Examination: written test #140schriftlich60 min
Examination: written test #240schriftlich60 min

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

The grade is determined according to § 47 (2) AllgStuPO with the grading system 2 of faculty IV. * Exercises: Concurrent to the lecture, there will be a tutorial in which eight assignment sheets have to be solved. These are devoted to practical EEG analysis (programming). * Written exams: In the first half and in the second half of the lecture, there will be written tests of 60 minutes each.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 30.

Anmeldeformalitäten

Registration: * Either email to Sekr. MAR 4-3: Imke Weitkamp <imke.weitkamp@tu-berlin.de> * or register in the respective courses in the information system at https://isis.tu-berlin.de/

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Blankertz B, Lemm S, Treder MS, Haufe S, Müller KR, Single-trial analysis and classification of ERP components - a tutorial, Neuroimage, 56:814-825, 2011.
Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR, Optimizing Spatial Filters for Robust EEG Single-Trial Analysis, IEEE Signal Process Mag, 25(1):41-56, 2008.
Dornhege G, R. Millán J d, Hinterberger T, McFarland D, Müller K (eds), Toward Brain-Computer Interfacing, MIT Press, 2007.
Parra LC, Spence CD, Gerson AD, Sajda P. Recipes for the Linear Analysis of EEG, Neuroimage, 28(2):326-341, 2005.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Biomedizinische Technik (M. Sc.)16WiSe 2022/23SoSe 2025
Computer Engineering (M. Sc.)124WiSe 2022/23SoSe 2025
Computer Science (Informatik) (M. Sc.)112WiSe 2022/23SoSe 2025
Elektrotechnik (M. Sc.)118WiSe 2022/23SoSe 2025
Wirtschaftsingenieurwesen (M. Sc.)112WiSe 2022/23SoSe 2025

Sonstiges

Keine Angabe