Zur Modulseite PDF generieren

#40353 / #12

Seit SoSe 2025

English, German

BDASEM Big Data Analytics Seminar

3

Markl, Volker

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34351500 FG Datenbanksysteme und Informationsmanagement (DIMA)

Keine Angabe

Kontakt


EN 7

Soto, Juan

sekr@dima.tu-berlin.de

Lernergebnisse

During the course of the seminar, the students will learn: (1) how to critically read and interpret scientific literature, (2) how to give a good scientific presentation that is technically precise, concentrated on the relevant topics, and also enjoyable, (3) how to summarize and write a critical, succinct technical review of a research paper. In addition, students will receive an introduction to contemporary research topics in data management, database systems, or technologies and systems for big data management and data science. Moreover, students will gain a great understanding of scientific publications, conferences, and the scientific review process.

Lehrinhalte

During the initial phase of this class, students will hear presentations on how to read and review scientific papers, and how to give a good presentation. Additionally, all participants will receive a raw submission version of a top-tier conference research paper. Task of the students is to critically read the paper and prepare a written review of the paper, following a typical conference reviewing template. Afterwards, students will receive the actual expert reviews of the paper, compare these to their findings, and prepare and deliver a presentation that discusses the improvements made between the original submission and the publication of the paper based on the reviewers' criticisms. Moreover, each week, students will be required to reflect on the main challenges addressed in each of their peers' presentations. (Details will be announced in the class.) Representative topics to be discussed, include data stream processing (e.g., scalable and parallel window joins, window aggregation, state management), data processing on modern hardware (e.g., GPU data processing, FPGA acceleration for data sketching), data processing for machine learning and data science (e.g., optimizing machine learning pipelines, dynamic parameter allocation in parameter servers), and query optimization and compilation (e.g., adaptive compilation).

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Big Data Analytics (BDASEM)SEM0434 L 477SoSeen2

Arbeitsaufwand und Leistungspunkte

Big Data Analytics (BDASEM) (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Plenary Sessions10.02.0h20.0h
Preparation/Individual Work1.060.0h60.0h
Mentor consultations5.01.0h5.0h
85.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 85.0 Stunden. Damit umfasst das Modul 3 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

At the beginning of the semester students will receive an originally submitted conference paper. Then each student should identify and use secondary sources to further investigate the assigned topic. A few weeks afterwards students will prepare a written review of their paper adhering to the scientific reviewing standards. At the end of the semester, each student will offer a presentation, as well as a discussion of all of the other seminar papers. Details may vary and will be announced in the respective semester.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

This course is aimed at third semester Master's students with a focus on database systems and information management. Desirable prerequisites include the following: (a) successfully completed the TU Berlin Database Technology (DBT) course or its equivalent, (b) at least one of the advanced information management courses, such as the Management of Data Streams or Data Management on Modern Hardware, (c) sound understanding of written and spoken English. Ideally, this seminar should be taken the semester before commencing your master's thesis.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Voraussetzung
Leistungsnachweis »[BDASEM] Written Paper Review«

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English

Dauer/Umfang

Presentation (§57 ASPO): 20min + 2 min Intro presentation + Q&A

Prüfungsbeschreibung (Abschluss des Moduls)

Prerequsite =========== Handing in a written paper review based on the first submission of the assigned paper Effort: 3-5 pages Passing criterion: Handing in the review. Final exam (temporary, until Exam Type can be selected) ========= Examination type: Presentation (§ 57 ASPO) Contains: A brief introduction of another discussed paper (about 2 Minutes), 20 minutes of Presentation, Q&A session

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 8.

Anmeldeformalitäten

Admission to the lecture is limited. Please have a look at https://www.tu.berlin/dima/studium-lehre/kursangebote before the lecture period starts to get information on how you can register.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Will be released at the beginning of the seminar.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Computer Engineering (M. Sc.)12SoSe 2025SoSe 2025
Computer Science (Informatik) (M. Sc.)13SoSe 2025SoSe 2025
Elektrotechnik (M. Sc.)12SoSe 2025SoSe 2025
ICT Innovation (M. Sc.)11SoSe 2025SoSe 2025
Information Systems Management (Wirtschaftsinformatik) (M. Sc.)12SoSe 2025SoSe 2025
Medieninformatik (M. Sc.)11SoSe 2025SoSe 2025
Wirtschaftsingenieurwesen (M. Sc.)11SoSe 2025SoSe 2025
This course targets Master's students interested in database systems and information management. This seminar is one of eligible courses for those following the Fak. IV Data Science and Engineering Track: https://www.tu.berlin/en/dima/analytics/data-science-and-engineering-track.

Sonstiges

Keine Angabe