Zur Modulseite PDF generieren

#30781 / #5

Seit SoSe 2025

English

Sustainable energy supply in on- and off-grid systems
Nachhaltige Energieversorgung in netzgebundenen- und netzfernen Systemen

6

Herkendell, Katharina

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät III

Institut für Energietechnik

33371800 FG Energieverfahrenstechnik und Umwandlungstechniken regenerativer Energien

MSc Regenerative Energiesysteme

Kontakt


GG 1

Hofmann, Mathias

mathias.hofmann@tu-berlin.de

Lernergebnisse

The integrated lecture teaches the most important technical and economic characteristics of planning and operating sustainable electricity supply systems from an on- and off-grid perspective. The lecture is guided by the principle of the Sustainable Development Goal 7 (SDG7): Ensure access to affordable, reliable, sustainable, and modern energy for all. This means increasing the share of renewable energy supply in existing systems as well as improving energy access in currently unelectrified areas. The first half of the lecture will provide a deeper insight into renewable energy systems and analyze pathways towards a 100% renewable energy system. During simulation exercises, the students will learn how to model and optimize a renewable energy system using Python and the Open Energy Modelling Framework (oemof) considering techno-economic constraints. Using their own programmed energy system model, the students should evaluate the assets and drawbacks of the various renewable technologies. The description of the obstacles enables the students to create the conditions for a possible transition of the energy system to sustainable concepts and allows the assessment of respective actions. The second half will provide information and detailed knowledge on energy access and off-grid systems. It will focus on the different steps of rural electrification planning as well as on the design and modeling of hybrid mini-grids (off-grid systems). The students will learn in practical exercises how to model a mini-grid within a simplified excel tool and how to consider the techno-economic characteristics. Such mini-grids can also play an important part in the on-grid transition as so-called energy-cells. Therefore, both parts of the lecture are connected not only via SDG7 but also via a decentral view on the energy transition. The module imparts predominantly the following competence: Technical 30%, Methodology 30%, Systematic 30%, Social competence 10%

Lehrinhalte

The module „Sustainable energy supply in on- and off-grid systems” is split into two integrated lectures, one focusing on on-grid and one on off-grid energy supply. On-grid: 1. Energy Transition; 2. Overview of renewable potential and technology options; 3. Energy system flexibility; 4. Economics and markets of renewable energies; 5. Modeling, simulation, and optimization of renewable energy systems; 6. Open Energy Modelling Framework (oemof); 7. System perspective on 100% renewable energy Off-grid: 1. Fundamentals of Energy Access and SDG7; 1.1. Introduction to SDG7 and impacts of energy access. Global figures on energy access; 1.2. Group work on measuring energy access; 2. Electrification options (Grid extension, Mini-Grids, SHS); 2.1. Description of technologies and typical characteristics; 3. Demand and Ressource Assessment; 3.1. Demand Modelling; 3.2. Ressource Assessment; 3.3. Geospatial Information Systems; 4. Mini-grids and island systems); 4.1. Technical background; 4.2. Simplified modelling of mini-grid; 4.3 Multi-Criteria-Analysis All lecture slides are given in English. Literature is given in English and German. The module will be taught in english. All students need to bring their own laptops for the modeling and simulation exercises.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Sustainable energy supply in on- and off-grid systemsIVWiSe/SoSede, en4

Arbeitsaufwand und Leistungspunkte

Sustainable energy supply in on- and off-grid systems (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Lecture: Time of attendance15.02.0h30.0h
Lecture: Preparation and follow-up time15.02.0h30.0h
Exercise: Time of attendance10.02.0h20.0h
Exercise: Preparation and follow-up time10.02.0h20.0h
Homework5.04.0h20.0h
120.0h(~4 LP)

Lehrveranstaltungsunabhängiger Aufwand:

AufwandbeschreibungMultiplikatorStundenGesamt
Exam preparation1.060.0h60.0h
60.0h(~2 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

We offer an integrated lecture, which comprises lectures and presentations as well as theoretical and practical exercises and group work.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Modul Umwandlungstechniken regenerativer Energien Experience in the programming language Python or at least high motivation for self-organized learning (Python basics will not be taught in this module)

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English, German

Prüfungselemente

NamePunkteKategorieDauer/Umfang
participation30praktisch?
homework20praktisch5x 4 hours
written examination50schriftlichmax. 60 Minutes

Notenschlüssel

Notenschlüssel »Notenschlüssel 6: Fak III (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt90.0pt85.0pt80.0pt75.0pt70.0pt66.0pt62.0pt58.0pt54.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

The form of exam is a Portfolio Exam. The grade will be weighted for the final grade and appears on the final transcript. In the whole module a written examination, participation and homework are weighted in the following way: • Written examination: 50 % • Homework: 20% • Participation: 30 % •

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 20.

Anmeldeformalitäten

Moses

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Reiner Lemoine Stiftung: Übersichtsstudie zur EnergieSystemWende - Systemische Hemmnisse der Energiewende und Lösungsansätze, 2019
V. Quaschning: Renewable Energy and Climate Change, Wiley, ISBN 978-1-119-51486-2, 2019
K. Mertens: Photovoltaics: fundamentals, technology and practice, Wiley, ISBN-13: 978-1119401049, 2013
R. Gasch, J. Twele: Wind Power Plants - Fundamentals, Design, Construction and Operation, Springer, e-ISBN 978-3-642-22938-1, 2012
M. Sterner, I. Stadler: Handbook of Energy Storage: Demand, Technologies, Integration, Springer, ISBN 978-3-662-55504-0, 2019
Agora Energiewende: The Liberalisation of Electricity Markets in Germany History, Development and Current Status, 2019
L. Kriechbaum, G. Scheiber, T. Kienberger: Grid-based multi-energy systems-modelling, assessment, open source modelling frameworks and challenges, Energy Sustainability and Society, DOI: 10.1186/s13705-018-0176-x, 2018
N. I. Maruf: A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy System - Case Study of Schleswig-Holstein, Sustainability, https://doi.org/10.3390/su13073852, 2021
S. Hilpert et al.: The Open Energy Modelling Framework (oemof) - A new approach to facilitate open science in energy system modelling, Energy Strategy Reviews, https://doi.org/10.1016/j.esr.2018.07.001, 2018
IEA, WEO-2017 Special Report: Energy Access Outlook, 2017
IEA, World Energy Outlook, Special Report, Africa Energy Outlook, A focus on energy prospects in sub-Saharan Africa, 2014
S. C. Bhattacharyya; D. Palit: Mini-grids for rural electrification of developing countries : analysis and case studies from South Asia, Switzerland : Springer, 2014
M. Schäfer; D. Kammen; N. Kebir; D. Philipp; J. van der Straeten: Innovating Energy Access for Remote Areas: Discovering Untapped Resources : Proceedings of the International Conference ; April 10th to 12th, 2014 ; University of Berkeley Universitätsverlag der TU Berlin;Berlin, 2015
P. Bertheau, C. Cader, P. Blechinger, Electrification Modelling for Nigeria, Energy Procedia, Volume 93, 2016, Pages 108-112, ISSN 1876-6102,
From the Bottom Up: How Small Power Producers and Mini-Grids Can Deliver Electrification and Renewable Energy in Africa Directions in Development - Energy and Mining. January 2014
C. Vezzoli: Designing Sustainable Energy for All : Sustainable Product-Service System Design Applied to Distributed Renewable Energy, Springer International Publishing, Imprint, Springer, 2018

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Energie- und Verfahrenstechnik (M. Sc.)11SoSe 2025SoSe 2025
Process Energy and Environmental Systems Engineering (M. Sc.)22SoSe 2025SoSe 2025
Regenerative Energiesysteme (M. Sc.)24SoSe 2025SoSe 2025
Sustainable Energy and Process Engineering (M. Sc.)11SoSe 2025SoSe 2025
Wirtschaftsingenieurwesen (M. Sc.)12SoSe 2025SoSe 2025

Sonstiges

Keine Angabe