Veranstaltung

LV-Nummer
Gesamt-Lehrleistung 117,33 UE
Semester SoSe 2025
Veranstaltungsformat LV / Vorlesung
Gruppe Mathematics of Machine Learning (Blockseminar)
Organisationseinheiten Technische Universität Berlin
Fakultät II
↳     Institut für Mathematik
↳         32361800 FG Stochastische Analysis
URLs
Label
Ansprechpartner*innen
Gess, Benjamin
Verantwortliche
Sprache Deutsch

Termine (1)


Fr. 05.09 - 19.09.25, wöchentlich, Mo. 08.09 - Do. 11.09.25, täglich, Mo. 15.09 - Do. 18.09.25, täglich, 09:00 - 17:00

Charlottenburg
,
MA 544

32361800 FG Stochastische Analysis

117,33 UE
Einzeltermine ausklappen
Legende
08:00
09:00
10:00
11:00
12:00
13:00
14:00
15:00
16:00
17:00
Mo.
Fortgeschrittene Themen der Stochastik (5LP) (Vorlesung)
Mathematics of Machine Learning (Blockseminar)
Charlottenburg, MA 544
Gess, Benjamin
Di.
Fortgeschrittene Themen der Stochastik (5LP) (Vorlesung)
Mathematics of Machine Learning (Blockseminar)
Charlottenburg, MA 544
Gess, Benjamin
Mi.
Fortgeschrittene Themen der Stochastik (5LP) (Vorlesung)
Mathematics of Machine Learning (Blockseminar)
Charlottenburg, MA 544
Gess, Benjamin
Do.
Fortgeschrittene Themen der Stochastik (5LP) (Vorlesung)
Mathematics of Machine Learning (Blockseminar)
Charlottenburg, MA 544
Gess, Benjamin
Fr.
Fortgeschrittene Themen der Stochastik (5LP) (Vorlesung)
Mathematics of Machine Learning (Blockseminar)
Charlottenburg, MA 544
Gess, Benjamin
Kalender als PDF exportieren

Mathematics of Machine Learning (Blockseminar)

Blockseminar 05.-19.09.2025

Inhalt:

In this hybrid course we aim to get acquainted with some of the recent progress in the mathematical understanding and theory of machine learning. Particular emphasis will be laid upon the implicit bias in supervised learning, as well as upon generative modelling.

The aim of the course is to get an overview of a series of recent articles and the methods developed therein.

The course is directed to non experts with a solid background in mathematics aiming to get an idea of recent progress in the mathematics of machine learning.

Active contribution in form of a presentation of a research paper (to be chosen) is required for each participant.

Link to seminar webpage (password on request via Alexandra Schulte): https://www.bgess.de/index.php/teaching/bielefeld-leipzig-online-seminar-ss25-mathematics-of-machine-learning/"