Zur Modulseite PDF generieren

#60277 / #3

Seit SS 2017

English

SGN Space Geodesy and Navigation III

9

Schuh, Harald

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät VI

Institut für Geodäsie und Geoinformationstechnik

36335100 FG S-Professur Satellitengeodäsie (Space Geodesy)

Geodesy and Geoinformation Science

Kontakt


H 12

Keine Angabe

harald.schuh@tu-berlin.de

Keine Angabe

Lernergebnisse

After this module the students have a detailed knowledge of the Global Navigation Satellite Systems (GNSS) that are operational today and planned for the future: The mathematical and scientific strategies for positioning and navigation and the effects important for the error budget in navigation and positioning solutions are understood and can be applied to new scenarios. Regarding Mathematical Geodesy, the students will learn about different aspects of Differential Geometry and the Theory of Functions.

Lehrinhalte

Methodology of Positioning and Navigation with GNSS VL 3633 L 243, UE 3633 L 244 Motivation: why Global Navigation Satellite Systems (GNSS: GPS, GLONASS, Galileo, BEIDOU, ...)? The space- and ground-based components of GNSS. Signal structures of the GNSS and the differences between them. Time- and reference systems for GNSS and their realizations. Principles of code and phase measurements. Observation equations for phase and code and the basic algorithms for positioning. Differencing and linear combinations of observations. Satellite orbits and their representation. Impact of atmospheric refraction (ionosphere and troposphere). Site specific effects (antenna phase centre variations, multipath, etc.). Positioning and navigation methods and approaches (PPP, differential positioning, kinematic/static, …); pre-processing algorithms. Ambiguity resolution methods. Reference networks and positioning services. SAPOS. Wide- and Local Augmentation Systems. Geodetic Space Procedures in the Earth System Research IV 3633 L 241 Measurement principles of the most important space- and ground-based geodetic observation techniques, namely Very Long Baseline Interferometry (VLBI), Satellite and Lunar Laser Ranging (SLR/LLR), Global Navigation Satellite Systems (GNSS, including GPS, GLONASS, GALILEO, …), Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), ocean and ice altimetry, InSAR and gravity field satellite missions and innovative future concepts. The application of these techniques to determine the three pillars of space geodesy: the Earth’s geometry and deformation (including sea surfaces), the Earth orientation and rotation, and the Earth gravity field and its temporal variations (mass transport). Methods to solve huge parameter estimation problems and for time series analyses are explained and applied. Estimation/monitoring of station motion and surface deformation. Models of the processes deforming the Earth‘s surface like plate tectonics, post-glacial rebound, solid Earth tides, surface loads (ocean, atmosphere, ice, ...). Importance of deformation measurements for natural hazards and early warning systems (deformation by earthquakes, GNSS seismology, land slides, sea level change, volcano monitoring, subsidence). Methods to determine the global gravity field of the Earth and its temporal variability including satellite to satellite tracking (SST; high-low, low-low), satellite gravity gradiometry (SGG) and altimetry. Orbit determination methods. Static gravity field as reference surface (geoid) and information about the structures and processes in the Earth‘s interior; the temporal variations to monitor mass transport phenomena (global hydrology, sea level change, melting of ice sheets, post-glacial rebound, ...). Geodetic and geophysical models of the Earth orientation and rotation including effects of Sun, Moon and planets, and of the different components of the Earth system like ocean, atmosphere, hydrosphere, ...). Comparisons with observed Earth orientation parameters series. GNSS remote sensing comprising atmospheric sounding from ground and space (radio occultations), determination of water vapor in the troposphere and the electron density in the ionosphere. GNSS reflectometry and scatterometry. Importance for meteorology, weather forecasts and climatology.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Methodology of Positioning and Navigation with GNSSVL3633 L 243WiSeen2
Space Geodetic TechniquesIV3633 L 241WiSeen4
Methodology of Positioning and Navigation with GNSSUE3633 L 244WiSeKeine Angabe2

Arbeitsaufwand und Leistungspunkte

Methodology of Positioning and Navigation with GNSS (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Homework and post - processing15.02.0h30.0h
Overall attendance15.02.0h30.0h
60.0h(~2 LP)

Space Geodetic Techniques (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Homework and post - processing15.06.0h90.0h
Overall attendance15.04.0h60.0h
150.0h(~5 LP)

Methodology of Positioning and Navigation with GNSS (UE):

AufwandbeschreibungMultiplikatorStundenGesamt
Homework and post - processing15.02.0h30.0h
Overall attendance15.02.0h30.0h
60.0h(~2 LP)
Der Aufwand des Moduls summiert sich zu 270.0 Stunden. Damit umfasst das Modul 9 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Methodology of the Positioning and Navigation with GNSS VL 3633 L 243, UE 3633 L 244 Didactic Concept -Lecture (70%) -Tutorials (20%) -Projects (10%) Geodetic Space Procedures in the Earth System Research IV 3633 L 241 Didactic Concept -Lectures (70%) -Exercises (20%) -Discussions (10%)

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

FOU Adjustment Calculation I, FOU Introduction to Satellite Geodesy, Programming skills.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English

Dauer/Umfang

40 Min

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

no information.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
A. Leick (1995). GPS Satellite Surveying. (Second edition). Willey-Interscience
A. Leick (2004). GPS Satellite Surveying. 3rd Edition. Wiley
B. Hofmann-Wellenhof, H. Lichtenegger, J. Collins. (1994). Global Positioning System. Springer Verlag Wien New York
David Wells (1996). Guide to GPS Positioning. Canadian GPS Associates
E.D. Kaplan, C.J. Hegarty (2006). Understanding GPS. Principles and Applications. Artech House.
G. Seeber (2003). Satellite Geodesy. de Gruyter. Berlin.
G. Strang, K. Borre (1997). Linear Algebra, Geodesy and GPS. Wellesley-Cambridge Press.
P.J.G. Teunissen, A. Kleusberg (Eds.) (1998). GPS for Geodesy. Springer.
R. Rummel, H. Drewes, W. Bosch, H. Hornik (Eds.) (1998). Towards an Integrated Global Geodetic Observing System (IGGOS).

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Sonstiges

Keine Angabe