Zur Modulseite PDF generieren

#50905 / #4

SoSe 2022 - WiSe 2022/23

English

Data Science and Artificial Intelligence for Urban Water Management

6

Cominola, Andrea

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät V

Institut für Strömungsmechanik und Technische Akustik

35311100 FG Fluidsystemdynamik-Strömungstechnik der Maschinen und Anlagen

Physikalische Ingenieurwissenschaft

Kontakt


FSD

Cominola, Andrea

andrea.cominola@tu-berlin.de

Lernergebnisse

During this course, the students will acquire first basic knowledge, and then more advanced notions about modelling, Data Science (DS) & Artificial Intelligence (AI) techniques for modelling and managing urban water systems, with theory, methods, and applications. They will learn the basics of mathematical modelling and simulation (model building, model calibration, model performance assessment), along with more sophisticated DS and AI techniques to model, simulate, and control urban water distribution networks. They will learn what the current research challenges in the field of urban water systems management are, with a focus on the latest DS and AI technologies. They will learn how to build a model of a water distribution network in a virtual environment. They will approach the practical implementation of solutions to currently relevant problems in modelling and operation of urban water distribution systems, with guided practical activities. They will learn how to read scientific literature. They will learn how to concisely analyze and present a research work.

Lehrinhalte

The digital transition of urban water networks towards more data-driven and intelligent systems represents a primary opportunity to tackle the challenges posed by increasing population, urbanisation, and changing climate conditions. As the data-driven transformation reaches into the economy and society, ever-increasing amounts of data are generated by machines or processes based on emerging technologies, such as the Internet of Things (IoT), connected systems, and advanced modelling. While digital disruption has already transformed a number of other industries globally, the water sector has only recently embraced the digital transformation. This is the key to developing suitable adaption strategies that, relying on better information than in the past, support management and decision-making actions to plan adaptation strategies that enhance the resilience of urban water systems under uncertain future climate and social scenarios. The phenomenon of digitalization of urban water system will be analysed, starting from basic notions of modelling water distribution networks, and then adding more focus on Data Science and Artificial Intelligence approaches to modelling and controlling such networks. The course will be structured around the main topic of modelling and management of water distribution networks. In addition, other sub-topics will be touched during the course, enabling the students to get an overview of the different elements of modern urban water systems, acquire knowledge about best technologies, learn how to identify anomalies (e.g., leakages) in the normal operation of these systems, and get insights on the role and influence of human behaviours in such systems. The following CORE TOPICS will be covered: 1. Mathematical modelling and hydraulic modelling of water distribution networks (WDN) 2. Model calibration, validation, and performance assessment 3. Water demand modelling 4. Simulation and optimisation of WDN operations. In tackling the above topics, notions on the following DS and AI techniques will be introduced: 1. Time series analysis 2. Clustering techniques 3. Control theory and optimisation 4. Artificial neural networks. Additionally, one module of this course - the Journal Club - will be focused on developing skills for reading and analysing scientific literature. During the project activity, the students will be actively fostered to develop own solutions for a sample problems introduced during the guided practical lab activities. These activities will rely on open available datasets. Assessment includes final quizzes, a final presentation, and a short project report. The lecture will be given in English and will include lectures by international guest speakers.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Data Science and Artificial Intelligence for Urban Water ManagementIVSoSeen4

Arbeitsaufwand und Leistungspunkte

Data Science and Artificial Intelligence for Urban Water Management (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance7.08.0h56.0h
Exam1.08.0h8.0h
Exam preparation7.08.0h56.0h
Pre/post-processing8.07.5h60.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The lectures will be mainly in a frontal presentations format. Slides will be made available to students. The project includes tutoring sessions to guide the student through mathematical modelling tasks, starting from the basics of building a simple water distribution network in a virtual environment and moving on with more complex tasks, such as simulating and controlling the operation of such a network, and using Artificial Intelligence to model its main features. Guided activities will be complemented by open tasks, to be tackled by the students with guidance and feedback from the tutors. A short (max 5-7 pages) final report will be delivered at the end of the course, as prepared individually by each student. Further instructions about the final schedule, lecture rooms, and on how to get access to the lectures and exercise materials for the course will be communicated to the registered students via the e-learning ISIS platform.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Basic programming knowledge and previous experience with Python/Matlab/R is required. Guided practical activities will be performed in the course using Python and Jupyter Notebooks. Preferred competences (not compulsory): concepts of mathematical modelling, concepts of statistics and data analysis, and basic knowledge of water systems.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
Daily quizzes20schriftlich5 hours in total (cumulative of all quizzes)
Paper presentation30mündlich30 minutes (includes question time) + preparation time (max 3 days)
Project report50schriftlichEstimated duration for report preparation: 4 days maximum

Notenschlüssel

Notenschlüssel »Notenschlüssel 4: Fak I, Fak VII«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt90.0pt85.0pt80.0pt76.0pt72.0pt67.0pt63.0pt59.0pt54.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

Assessment includes: - daily quizzes, to be completed individually by each student after each lecture day; - a final paper presentation, to be prepared and presented in small groups - a short project report (approx. 5-7 pages), to be prepared individually, by each student.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 40.

Anmeldeformalitäten

Course registration via Prüfungsamt.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar

 

Literatur

Empfohlene Literatur
Keine empfohlene Literatur angegeben

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe