Zur Modulseite PDF generieren

#50809 / #1

WS 2018/19 - SoSe 2021

English

Magnetic Resonance Imaging

6

Kraft, Marc

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät V

Institut für Maschinenkonstruktion und Systemtechnik (IMS)

35351600 FG Medizintechnik

Maschinenbau

Kontakt


SG 11

Schäffter, Tobias Richard

mt-tb-office@win.tu-berlin.de

Lernergebnisse

The course is held by Prof. Dr. Tobias Schaeffter Head of Division, Medical Physics and Metrological Information Technologies at the PTB Berlin. MRI I (winter): Participants will learn the basic principles and the instrumentation of magnetic resonance imaging (MRI). Basic measurement techniques (MR-sequences) and the related image contrast mechanisms will be studied. The mathematical framework is developed to describe image encoding, the point-spread function (PSF), signal-to-noise ratio and contrast mechanism of MRI. Matlab exercises and homework are used to deepen the understanding of the basic concepts. MRI II (summer): This course is geared towards master students and PhD students who have visited the magnetic resonance imaging (MRI) course or have basic knowledge of MRI. The participants will learn concepts of advanced MRI encoding and decoding strategies. In particular the mathematical frameworks are developed to solve the inverse problem of fast acquisition strategies. The participants will also learn about quantitative MRI techniques and related data analysis techniques Matlab exercises and homework are used to deepen the understanding of the concepts.

Lehrinhalte

MRI I (winter): History of MRI, physical principle, Nuclear Magnetic Resonance (NMR) Effect, relaxation phenomena and chemical shift, spatial localisation and imaging, k-space formalism, basic pulse sequences (gradient and spin echo), contrast manipulation, fast imaging sequences, motion compensation, instrumentation and safety, signal-to-noise ratio, image-quality, artefacts, clinical applications and research. MRI II (summer): MRI signal equation, direct Fourier reconstruction, advanced k-space trajectories and gridding reconstruction, parallel imaging, compressed sensing, RF-pulse design and two-dimensional excitation, quantitative MRI (flow, diffusion, relaxation time mapping), cardiac MRI.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Magnetic Resonance Imaging II - Reconstruction and quantitative methodsIVSoSede, en2
Magnetic Resonance Imaging I - Principles and ApplicationsIVWiSede, en2

Arbeitsaufwand und Leistungspunkte

Magnetic Resonance Imaging II - Reconstruction and quantitative methods (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)

Magnetic Resonance Imaging I - Principles and Applications (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

MRI I: The lecture will provide physical and mathematical background to understand the principles of MRI. Participants are expected to rehearse the content after class in preparation for exercises. The exercises focus on the calculation of practical questions and exercises at the computer. For this, matlab-code will be made available, which need to be modified. Homework will consist of specific tasks with calculations and programming solutions using matlab. The participants will also attend a MR-measurement session. MRI II: The lecture will provide theoretical background to understand advanced encoding and decoding strategies in MRI. Furthermore, biophysical properties and related quantitative MR-measurements will be introduced. Participants are expected to rehearse the content after class in preparation for exercises. The exercises focus on the calculation of practical questions and exercises at the computer. For this, matlab-code will be made available, which need to be modified. Homework will consist of specific tasks with calculations and programming solutions using matlab. The participants will attend a MR-measurement session

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Mathematical background at the level of MS students in Engineering (Fourier transforms, signals and systems, linear algebra and notions of matrix theory). Knowledge of basic Matlab functionality is helpful The course is open to students enrolled in any MSc in Electrical Engineering, Mathematics and Physics

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

German

Prüfungselemente

NamePunkteKategorieDauer/Umfang
Homework winter12schriftlichreports provided by groups
(Examination) written part winter13schriftlich10min
(Examination) oral examination/discussion winter25mündlich20min
Homework summer12schriftlichreports provided by groups
(Examination) written part summer13schriftlich10min
(Examination) oral examination/discussion summer25mündlich20min

Notenschlüssel

Dieses Prüfung verwendet einen eigenen Notenschlüssel (siehe Prüfungsformbeschreibung).

Prüfungsbeschreibung (Abschluss des Moduls)

1.0 1.3 1.7 2.0 2.3 2.7 3.0 3.3 3.7 4.0 95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 50.0

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
2 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Please sign up for this course in ISIS after the first week of the new semester.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Dwight Nishimura, Principles of Magnetic Resonance Imaging , Stanford University press, 2010
Jaques A. den Boer, Marinus T. Vlaardingerbroek Magnetic Resonance Imaging Theory and Practice. Springer
Matt Bernstein, Kevin King, Xiaohong Zhou, Handbook of MRI Pulse Sequences, Academic Press
Olaf Dössel, O. (Ed.), T. Buzug, T. (2014). Band 7 Medizinische Bildgebung. Berlin, Boston: De Gruyter
Zhi-Pei Liang, Paul C. Lauterbur, Principles of Magnetic Resonance Imaging: A Signal Processing Perspective, Wiley-IEEE Press

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe