Zur Modulseite PDF generieren

#50693 / #1

SS 2017 - SoSe 2022

English

Energy storage processes
Energiespeicherungsprozesse

6

Stathopoulos, Panagiotis

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät V

Institut für Strömungsmechanik und Technische Akustik

35311200 FG Experimentelle Strömungsmechanik

Physikalische Ingenieurwissenschaft

Kontakt


HF 1

Stathopoulos, Panagiotis

stathopoulos@tu-berlin.de

Keine Angabe

Lernergebnisse

• The students will learn about energy storage systems both novel and applied. • Students will learn how electric networks are stabilized and why storage systems will be necessary • Students will learn to analyze electric storage energy systems energetically and economically.

Lehrinhalte

Variable renewable power generation has introduced new challenges in the operation of European electricity grids. On the one hand, the reduction of the system rotating inertia and sudden generation changes, due to market schedules, lead to significant frequency deviations. On the other hand, the uncertainty in weather forecasts and the inherent variability of wind and solar power systems increase the need for secondary and tertiary reserves. In particular, the demand for positive secondary reserve is expected to increase in the next 10 years in Germany by 40%, whereas the negative by 10 %. Tertiary reserve demand is expected to grow even stronger in Germany, namely by 70% and 90% respectively. Similar trends are expected on a European level. The projected penetration of renewable generation in Europe in the next decade will frequently lead to more negative residual loads, thus increasing the need for fast and reliable energy storage facilities. It is estimated that approximately 310 GW of additional electricity storage capacity will be needed in the United States, Europe, China and India in order to support the aimed global reduction in CO2 emissions. Electric energy storage technologies in all stages of development (from commercially available, to system in the development phase), are the topic of this lecture. Apart from the introduction to the technical characteristics of these systems, methods and tools for their energetic and economic analysis will be part of the lecture. These methods will be applied in the course of the accompanying exercise for specific case studies. Contents of the lecture • Introduction in electric energy systems and their current challenges • Introduction in energetic analysis of electric energy storage systems. • Introduction in economic analysis of electric energy storage systems • Analysis of electric energy storage systems. Some examples of the cycles to be studied are the following: o Compressed air energy storage systems with gas turbines o Pumped hydro storage systems o Batteries (in cooperation with Prof. Kowal) o Power-to-gas systems  Electrolysis  Electrolysis + methanization  Power generation applications that use the product gases o Thermoelectric storage systems o Thermochemical systems

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Energy storage processesVL3531 L 022WiSeen2
Energy storage processesUE3531 L 023WiSeen2

Arbeitsaufwand und Leistungspunkte

Energy storage processes (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Energy storage processes (UE):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Apart from the typical frontal lectures, there will be several sessions where the active participation of the students will be necessary. An accompanying exercise will focus on the energetic and economic analysis of electrical energy storage systems for given case studies. Data from the actual operation of pumped hydro systems and compressed air energy storage systems will be presented and analyzed in the course of the exercise.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Basic thermodynamics (Thermo I), basic energy systems theory, basic energy economics.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English

Dauer/Umfang

30-45 minutes

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

--

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Bacon, D., M. Bearden, J. Cabe, M. Chamness, C. Davidson, J. Horner, F. Knudsen, et al. 2013. “Techno-Economic Performance Evaluation of Compressed Air Energy Storage in the Pacific Northwest.”
Hameer, Sameer, and Johannes L. van Niekerk. 2015. “A Review of Large-Scale Electrical Energy Storage.” International Journal of Energy Research 39 (9): 1179–95. doi:10.1002/er.3294.
Luo, Xing, Jihong Wang, Mark Dooner, and Jonathan Clarke. 2015. “Overview of Current Development in Electrical Energy Storage Technologies and the Application Potential in Power System Operation.” Applied Energy 137 (January): 511–36. doi:10.1016/j.apenergy.2014.09.081.
Luo, Xing, Jihong Wang, Mark Dooner, Jonathan Clarke, and Christopher Krupke. 2014. “Overview of Current Development in Compressed Air Energy Storage Technology.” Energy Procedia 62: 603–11. doi:10.1016/j.egypro.2014.12.423.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe