Zur Modulseite PDF generieren

#50128 / #4

Seit SS 2018

Deutsch

Aerothermodynamik I

6

Weiss, Julien

Benotet

Mündliche Prüfung

Deutsch

Zugehörigkeit


Fakultät V

Institut für Luft- und Raumfahrt

35341600 FG Aerodynamik, insb. Überschalltechnik

Verkehrswesen

Kontakt


F 2

Weiss, Julien

julien.weiss@tu-berlin.de

Keine Angabe

Lernergebnisse

Die Studierenden verfügen nach erfolgreichem Bestehen des Moduls Aerothermodynamik I über: Kenntnisse in: - grundlegenden Begrifflichkeiten der Aerothermodynamik und des Wärmetransportes - Wärmtransportmechanismen (Konvektion, Wärmeleitung, Wärmestrahlung) - Gesetze zur Beschreibung laminarer und turbulenter Geschwindigkeits- und Temperaturgrenzschichten - Analogien zwischen Impuls- und Wärmetransport in Grenzschichten - Kopplung von Temperatur- und Geschwindigkeitsgrenzschichten für laminare und turbulente Strömungen - Kopplung von Strömung und Struktur zur Bestimmung des wechselseitigen Einflusses - Dissipation und deren Einfluss auf Geschwindigkeits- und Temperaturgrenzschichten - Realgaseffekte, Unterschiede zum idealen Gas, Gültigkeitsbereiche des idealen Gases - Kühlsysteme, unterschiedliche Kühlmethoden und deren praktische Anwendung - aerothermodynamische Versuchsanlagen Fertigkeiten: - Berechnung des Wärmeüberganges in verschiedensten Anwendungen - Berechnung der Temperaturverteilung in Strukturen - Berechnung von gekoppelten selbstähnlichen, laminaren Geschwindigkeits- und Temperaturgrenzschichten - Berechnung gekoppelter Temperaturfelder in Strömung und Struktur - Bestimmung von Strömungsdaten für ideale und reale Gase Kompetenzen: - Verständnis der unterschiedlichen Wärmetransportmechanismen und deren Zusammenspiel - Verständnis der Reynolds-Analogie und deren praktischer Anwendungen - Verständnis von Temperatur- und Geschwindigkeitsgrenzschichten in allen Geschwindigkeitsregimes - Bewertung des Einflusses thermisch belasteter Grenzschichten auf die Struktur - Bewertung des Einflusses thermisch belasteter Strukturen auf die Grenzschicht - Verständnis der Grenzen des idealen Gasmodells und der Unterschiede zum Realgas - Programmierung von kleineren numerischen Programmen zur Lösung von Differentialgleichungssystemen

Lehrinhalte

Vorlesung: - Grenzschichtgesetze - Grundlagen des Wärmetransportes - Wärmestrahlung - Reynolds Analogie - Kennzahlen - Gekoppelte laminare Grenzschichten - Gekoppelte turbulente Grenzschichten - Kopplung von Strömung und Struktur - Hyperschall / Wiedereintritt - Aerothermodynamische Probleme der Luft- und Raumfahrt - Realgaseffekte - Kühlsysteme / Kühlmethoden - Aerothermodynamische Versuchsanlagen Übung: - Wärmetransport: Konvektiver Wärmeübergang an ebenen Platten, Vergleich der Theorie mit den experimentell ermittelten Ergebnissen - Wärmetransport: Analytische Berechnung zur Kalibrationskurve von Hitzdrähten - Wärmetransport: Numerische Berechnung der Temperaturverteilung in einer Struktur - Reynolds Analogie: Berechnung des Wandwärmestroms an einer mit Überschall angeströmten ebenen Platte - Kennzahlen: Bestimmung dimensionsloser Kennzahlen aus Differentialgleichungssystemen - Gekoppelte Grenzschichten: Numerische Berechnung von gekoppelten laminaren, selbstähnlichen Geschwindigkeits- und Temperaturgrenzschichten - Hyperschall / Realgaseffekte: Bestimmung der Strömungsdaten in der Nähe des Staupunktes eines Hyperschall-Flugkörpers als ideales und reales Gas Experiment: - Experiment zum Wärmeübergang an einer ebenen Platte am Thermo-Windkanal des Instituts für Luft- und Raumfahrt zur Verdeutlichung der in der Vorlesung vermittelten Inhalte zu den Grundlagen des Wärmetransportes

Modulbestandteile

Pflichtbereich

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Aero-Thermodynamik IIV140WiSede4

Arbeitsaufwand und Leistungspunkte

Aero-Thermodynamik I (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.04.0h60.0h
Vor-/Nachbereitung15.08.0h120.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Vorlesung: - Vorlesung - Exkursion Übung: - Übung - Messung - Experiment

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

a) obligatorisch: - Grundlagen der Strömungslehre b) wünschenswert: - Lineare Algebra für Ingenieure - Analysis I - Analysis II - Differentialgleichungen für Ingenieure - Einführung in die Informationstechnik - Einführung in die klassische Physik für Ingenieure - Aerodynamik I

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Mündliche Prüfung

Sprache(n)

Deutsch

Dauer/Umfang

ca. 25 Minuten

Prüfungsbeschreibung (Abschluss des Moduls)

Prüfungsform: - mündliche Prüfung besteht aus: - mündlicher Rücksprache

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Anmeldung zur Lehrveranstaltung: - in der ersten Vorlesung Anmeldung zur Prüfung: - beim Prüfungsamt und im Internet unter www.aero.tu-berlin.de

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:
beim betreuenden Assistenten

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Keine empfohlene Literatur angegeben

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Luft- und Raumfahrttechnik (M. Sc.)138SS 2018SoSe 2025
Physikalische Ingenieurwissenschaft (B. Sc.)224SS 2018SoSe 2025
Physikalische Ingenieurwissenschaft (M. Sc.)238SS 2019SoSe 2025
Technomathematik (B. Sc.)145SS 2018SoSe 2025
Technomathematik (M. Sc.)115SS 2018SoSe 2025

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

geeigneter Studiengang: - Bachelor Verkehrswesen, Studienrichtung Luft- und Raumfahrttechnik - Master Luft- und Raumfahrttechnik - Bachelor Physikalische Ingenieurwissenschaft - Master Physikalische Ingenieurwissenschaften geeignete Studienschwerpunkte: - Luftfahrttechnik Grundlage für: - Aerothermodynamik II

Sonstiges

Literaturliste im Skript