Zur Modulseite PDF generieren

#41212 / #1

WiSe 2024/25 - SoSe 2025

English

Seminar on Artificial Intelligence for Biomedical Applications
Seminar über künstliche Intelligenz für biomedizinische Anwendungen

6

Jadaun, Priyamvada

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Hochfrequenz und Halbleiter-Systemtechnologien

34321400 FG Halbleiterbauelemente und Mikroelektroniksysteme

Keine Angabe

Kontakt


TIB 4/2-1

Krahn, Sandra

sekretariat@tmp.tu-berlin.de

Lernergebnisse

Recent months have seen an explosive interest in artificial intelligence (AI), especially large language models (LLM) like GPT, Gemini, Llama etc. These powerful models promise to transform the economy but face significant challenges, such as their humungous demand for energy. In contrast, the brain succeeds at surpassing these LLMs in intelligence, while being incredibly energy efficient. Taking inspiration from biology, scientists are developing a potentially breakthrough technology called 'neuromorphic computing' which aims to implement AI by mimicking the way a biological brain works. Neuromorphic computers are akin to artificial brains in that the circuits of these chips are similar to the neural circuits in the brain. Due to their ability to process large datasets at high speed and using low power, these brain-inspired chips could be highly useful for personalized medicine, wearable health trackers, wearable diagnostic devices, portable brain scanners, wearable brain-computer interfaces etc. This course will impart to the students an introductory understanding of the cutting-edge field of neuromorphic computing (AI hardware) and its highly promising applications in biomedicine. Students will read and discuss the latest and important research papers in the field of AI hardware and biomedicine. They will gain familiarity with the important problems, recent breakthroughs and future goals of designing hardware for AI that mimics the brain. They will also learn about novel technologies and far-reaching ideas in the field of biomedicine, personalized medicine, neurotechnology, wearable devices and bio-imaging. This knowledge would really help the students prepare for an economy that could be transformed by AI. In addition to learning about the aforementioned topics, students will also gain general scientific skills. For instance, students will learn how to read scientific papers, how to critically analyse them, how to discuss a paper with colleagues, how to ascertain a paper's positive and negative features. These skills are very important to any scientist or engineer.

Lehrinhalte

Bridging the gap between artificial intelligence and biological intelligence, this course will introduce to the students the rising field of brain-inspired computing and its applications in biomedicine. The course will be conducted as a typical seminar course and each week the class with discuss 1-2 important research papers in the field. The papers will be chosen depending on the latest publications but will cover the following topics: 1. A brief introduction to neuromorphic engineering: The course will introduce the students to the ideas behind developing computer chips that mimic the brain 2. Neuromorphic applications in disease diagnosis: The detection and diagnosis of diseases like cancer, retina (eye) damage from diabetes, internal bleeding (hemorrhage), abnormal growths like polyps can significantly benefit from hardware-based AI. 3. Neuromorphic applications in analysis of biological signals: The human body emits a variety of biological signals and markers that can be monitored and analysed to support human health. These include perspiration, respiration, electro-cardiogram (ECG), electro-encephalogram (EEG) etc. Hardware-based AI devices can help doctors monitor these signals in patients in real-time and real-life settings. Such devices can help save lives by predicting oncoming heart attacks, brain strokes and helping mitigate them. 4. Individualized Medicine: Neuromorphic chips can power personal health devices and usher in the era of personalized medicine. This topic envisions using AI to design therapies that are tailor-made for a patient depending on their specific genetic, environmental, lifestyle factors. 5. Neuromorphic wearable systems: The rise of neuromorphic chips implemented at the edge, i.e., on personal devices like smart phone and smart watches, has the potential to transform biomedicine. Wearable health trackers will be able to support continuous health monitoring while sensing like an artificial eye or ear could provide immense benefits to patients. 6. Neuromorphic applications in neural interfaces: Some of the most exciting applications of neuromorphic circuits lie in the field of neurotechnology. Advanced intelligent devices could analyse and interpret brain signals to unlock the profound mysteries of brain functioning. Here, students will get a peek into the possible convergence of the fields of neuroscience and computer science. 7. Challenges in integration of neuromorphic chips and biomedicine: Students will learn about some critical challenges facing the field of neuromorphic computing, including hardware design, scalability, adaptiveness, optimal algorithms.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Artificial Intelligence for Biomedical ApplicationsSEMWiSeen4

Arbeitsaufwand und Leistungspunkte

Artificial Intelligence for Biomedical Applications (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.04.0h60.0h
Pre/post processing15.04.0h60.0h
Presentation15.04.0h60.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

This is a classic seminar course where the class will discuss important research papers in the field. For every class, students will be prescribed 1-2 research papers to study. During the lecture, those papers will be discussed, analyzed and examined. Students will be encouraged to share their views, their learnings and their questions about the paper.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Good to very good knowledge of English. Basic knowledge of Computer Science and Artificial Intelligence

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Deliverable assessment) Presentation60mündlich20 minutes
(Examination) Oral exam40mündlich30 minutes

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

Towards the end of the course, each student will be asked to give one presentation on a subtopic in this field. Each presentation will be 15-20 minutes long and students will be graded on the content of their presentation as well as their communication skills. Students will also give a final oral exam after the end of the seminar course. Final grades will be based on the oral exam (60%) and presentation (40%).

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 15.

Anmeldeformalitäten

Please register for the module by e-mail. If there are more interested students than places, admission will be granted according to the date of receipt.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Keine empfohlene Literatur angegeben

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Computer Engineering (M. Sc.)18WiSe 2024/25SoSe 2025
Computer Science (Informatik) (M. Sc.)14WiSe 2024/25SoSe 2025
Elektrotechnik (M. Sc.)16WiSe 2024/25SoSe 2025
Medientechnik (M. Sc.)12SoSe 2025SoSe 2025

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe