Zur Modulseite PDF generieren

#41211 / #1

Seit WiSe 2024/25

English

Computational Materials Design
Computergestütztes Design von Materialien

6

Jadaun, Priyamvada

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät IV

Institut für Hochfrequenz und Halbleiter-Systemtechnologien

34321400 FG Halbleiterbauelemente und Mikroelektroniksysteme

Keine Angabe

Kontakt


TIB 4/2-1

Krahn, Sandra

sekretariat@tmp.tu-berlin.de

Lernergebnisse

Materials have enjoyed a powerful place both in our history and our collective imaginations. In history, during eras such as the "Bronze" and "Iron" ages, access to important materials determined the future of many a civilization. While mythical beliefs drove many alchemists to search for the Philosopher's Stone, an imaginary material which was believed to turn lead into gold. In the modern era, cutting-edge materials enable so much of our technology ranging from personal phones and electric cars to lasers and spacecrafts. In this course, we will take a scientific approach towards understanding and exploiting this wondrous world of materials. Students of this course will first learn the fundamentals of materials theory. They will learn how different materials are categorized and why they behave in their unique ways. Subsequently, the course will introduce to them cutting-edge simulation tools like density functional theory (DFT) that can predict what a particular material behaves like. Upon gaining familiarity with this tool, students will be taught how to apply such tools to design interesting materials with highly useful properties. For instance, students would be encouraged to design new materials for collecting solar power or building a laser. Finally, students will get a primer on how machine learning is being used to design new materials. Through this course, students will gain expertise that can be leveraged across various industries including semiconductors, applied materials and manufacturing.

Lehrinhalte

All the matter in the world is ultimately a material, and all this wondrous complexity results from the combination of some fundamental elements in various forms. This course will teach students how to understand and predict the properties of a material from its constituent elements and the specific way in which those elements come together. This course is broadly divided into the following sections: 1. Introduction to materials theory: The theory of materials is a theory developed to explain why a given material behaves in a certain way or shows certain properties. 2. Basics of electronic structure: Amongst various material properties, the electronic structure of a material is the one that is most relevant for electronics technology (e.g., computers, smart phones etc.). 3. Basics of density functional theory (DFT): A breakthrough theory that uses quantum mechanics to predict material properties, DFT was discovered by Walter Kohn who received the Nobel Prize in Chemistry in 1998 for this discovery. Students will learn the fundamentals of DFT and how to use it. 4. Designing new materials with highly useful properties: Students will be taught how to use DFT to design new materials with highly desired properties, such as: -- Electronic & magnetic materials - Materials used to build computer chips -- Optoelectronic materials - Materials used to build lasers -- Two-dimensional materials - Materials useful for wearable devices 5. Introduction to classical force fields, molecular dynamics, and Monte Carlo: Other than DFT which operates at the length scale of a few atoms, students will be introduced to tools that can explain materials properties at larger scales, e.g., few thousands or tens of thousands atoms. 6. Introduction to Machine Learning for Materials Simulation: An exciting recent development has been the merging of Machine Learning and DFT for materials design. This section will introduce this cutting-edge topic.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Computational Materials DesignVLWiSeen4

Arbeitsaufwand und Leistungspunkte

Computational Materials Design (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.04.0h60.0h
Pre/post processing15.08.0h120.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The course will be a classic lecture supported by multimedia presentations and modeling examples. Students will learn theory fundamentals and will gain familiarity with simulation tools used to model materials and their properties. Before a lecture, students will be expected to read the prescribed text. The lecture itself will be conducted in an interactive fashion and students will be encouraged to ask questions. Students will also be prescribed examples for hands-on modeling of materials using the simulation tools they are taught.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Good to very good knowledge of English. Basic background in quantum mechanics, thermodynamics, semiconductor physics and coding.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English

Dauer/Umfang

30 minutes

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

There is no registration required.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Keine empfohlene Literatur angegeben

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Computer Engineering (M. Sc.)14WiSe 2024/25SoSe 2025
Elektrotechnik (M. Sc.)14WiSe 2024/25SoSe 2025
Medientechnik (M. Sc.)12SoSe 2025SoSe 2025

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe