Zur Modulseite PDF generieren

#41018 / #1

WiSe 2020/21 - WiSe 2024/25

English

State Estimation for Robotics

6

Gallego, Guillermo

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Technische Informatik und Mikroelektronik

34342000 FG Robotic Interactive Perception

Keine Angabe

Kontakt


MAR 5-5

Keine Angabe

guillermo.gallego@tu-berlin.de

Lernergebnisse

Participants will learn theoretical foundations and relevant algorithms developed in the field of state estimation for robotics. State estimation is key for determining unknown variables in dynamical systems. In robotics it is paramount to determine the state of a robot (a set of quantities, such as position, orientation, and velocity) because once known it fully describes that robot’s motion over time. It is often closely identified with Bayesian filtering and its application to SLAM (Simultaneous Localization and Mapping). Upon completing the module, participants will have an overview of the field of state estimation and its toolbox. Students will be able to understand robotics systems on SLAM, ego-motion / attitude estimation and sensor fusion. They will be able to identify key performance metrics, applications, advantages and disadvantages of the methods in order to pick the best tool for the job.

Lehrinhalte

This course follows the book “State Estimation for Robotics” by Timothy Barfoot, Cambridge University Press (available online, follow the link below for a table of contents). Like the book, the course has a considerable mathematical payload. The topics covered include the following: optimization, least squares, linear-Gaussian estimation, nonlinear non-Gaussian estimation, uncertainty propagation, Bayesian filtering, Kalman filtering (KF), extended KF, particle filters, recursive estimation, state parameterizations, Simultaneous Localization and Mapping (SLAM) and continuous-time estimation. The course will provide details on how to tailor general estimation results to robots operating in three-dimensional space, advocating the matrix Lie group approach to handling rotations and poses. For the interested reader, a one-page summary of the history of estimation is provided in Section 1.1 of Barfoot’s book.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
State Estimation for RoboticsVL3434 L 10774WiSeen6

Arbeitsaufwand und Leistungspunkte

State Estimation for Robotics (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.06.0h90.0h
Pre/post processing15.06.0h90.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The lectures will present the topics (concepts and algorithms) from a theoretical point of view, highlighting the underlying principles and mathematical tools used. Participation/interaction is encouraged and expected, including the possibility of reading assignments. Participants are expected to rehearse topics after class in preparation for the exercises. The exercises are both theoretical and practical. The theoretical ones consist of mathematical problem solving to deepen the knowledge about the methods. The practical ones consist of partial implementation (in software) of the algorithms presented. These offer the participants the opportunity to get practical insights about the technology of state estimation.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Curiosity to learn something new and from a solid mathematical point of view. Knowledge of linear algebra, calculus, probability theory and computer programming is strongly recommended. Knowledge in robotics and computer vision is beneficial.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Deliverable assessment) Final program code30praktisch4-6 pages
(Examination) Written exam40schriftlich80 minutes
(Deliverable assessment) Program code30praktisch2-4 pages

Notenschlüssel

Notenschlüssel »Notenschlüssel 1: Fak IV (1)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt86.0pt82.0pt78.0pt74.0pt70.0pt66.0pt62.0pt58.0pt54.0pt50.0pt

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 30.

Anmeldeformalitäten

For any questions about the module, contact Prof. Gallego guillermo.gallego@tu-berlin.de

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
“State Estimation for Robotics”, by Timothy Barfoot, Cambridge University Press. Available online: http://asrl.utias.utoronto.ca/~tdb/bib/barfoot_ser17.pdf
“Robotics, Vision and Control”, by Peter Corke, 2nd Ed, Springer Tracts in Advanced Robotics.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Sonstiges

Keine Angabe