Zur Modulseite PDF generieren

#40979 / #1

SoSe 2020 - SoSe 2022

Englisch

Deep Learning for Communications

3

Schaefer, Rafael

Benotet

Portfolioprüfung

Englisch

Zugehörigkeit


Fakultät IV

Institut für Telekommunikationssysteme

34331900 FG Informationstheorie und deren Anwendungen

Keine Angabe

Kontakt


HFT 6

Schaefer, Rafael

rafael.schaefer@tu-berlin.de

Lernergebnisse

Keine Angabe

Lehrinhalte

Keine Angabe

Modulbestandteile

Pflichtbereich

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Deep Learning for CommunicationsSEM34331900 L 005SoSeen2

Arbeitsaufwand und Leistungspunkte

Deep Learning for Communications (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 90.0 Stunden. Damit umfasst das Modul 3 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Keine Angabe

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Keine Angabe

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolioprüfung

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

Deutsch, Englisch

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Deliverable assessment) Presentation66mündlichKeine Angabe
(Deliverable assessment) Mini-report34schriftlichKeine Angabe

Notenschlüssel

Notenschlüssel »Notenschlüssel 3: Fak IV (3)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt45.0pt40.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

Keine Angabe

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 15.

Anmeldeformalitäten

Keine Angabe

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
T. J. O’Shea and J. Hoydis, "An introduction to deep learning for the physical layer," IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 4, pp. 563-575, December 2017
I. Goodfellow, Y. Bengio and A. Courville, "Deep Learning" MIT Press, 2017

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Sonstiges

Keine Angabe