Anzeigesprache
Zur Modulseite PDF generieren

#40525 / #5

SoSe 2021 - WiSe 2023/24

Deutsch

Kognitive Algorithmen

6

Müller, Klaus-Robert

benotet

Schriftliche Prüfung

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34352000 FG Maschinelles Lernen

Keine Angabe

Kontakt


MAR 4-1

Vaitl, Lorenz Maximilian

klaus-robert.mueller@tu-berlin.de

Lernergebnisse

Ziel der Veranstaltung ist ein intuitives Verständnis elementarer Konzepte des Maschinellen Lernens, deren Entstehung und ihrer Anwendung in aktuellen Problemstellungen. Am Ende der Veranstaltung sind die Teilnehmer:innen vertraut mit grundlegenden kognitiven Fähigkeiten von Computerprogrammen wie etwa Bewegungserkennung, Klassifikation und Kategorisierung und typischen Anwendungsfeldern dieser Algorithmen wie z.B der automatisierten Schrifterkennung, intelligentem Filtern von E-Mail Spam oder Extraktion von semantischer Information aus Textdaten. Je nach Wahlpflichtkurs können die Studierenden zudem entweder ihre mathematisch Kenntnisse, ihre Python Erfahrung oder ein individuell gewähltes Anwendungsgebiet aus dem Maschinellen Lernen vertiefen.

Lehrinhalte

Elementare Methoden des Maschinellen Lernens, unter anderem überwachte Lernmethoden (lineare Klassifikation & Regression, Kernmethoden), Gradientenabstieg, Modellselektion (Kreuzvalidierung), Dimensionsreduktion (PCA), Neuronale Netze - Mathematische Grundlagen für Maschinelles Lernen: Dieser Kurs wiederholt, vertieft und spezialisiert die mathematischen Methoden für die Veranstaltung - Python Programmierung für Maschinelles Lernen: dieses Kurs vermittelt das praktische Rüstzeug zur Entwicklung, Anwendung und Untersuchung von Verfahren des Maschinellen Lernens in Python. - Seminar Anwendungen Kognitiver Algorithmen/Hot Topics in ML/Classical Topics in ML/ML and Data Management Systems: im Seminar wird das selbstständige Einarbeiten und Präsentieren von wissenschaftlichen Ergebnissen geübt.

Modulbestandteile

WP:

Aus den folgenden Veranstaltungen muss/müssen 1 Veranstaltung(en) abgeschlossen werden.

LehrveranstaltungenArtNummerTurnusSpracheSWSVZ
Anwendungen Kognitiver AlgorithmenSeminar04340L 562WiSe/SoSeKeine Angabe2
Classical Topics in MLSeminar0434 L 588WiSeKeine Angabe2
Hot Topics In MLSeminar0434 L 560SoSeKeine Angabe2
Machine Learning and Data Management SystemsSeminarWiSe/SoSeKeine Angabe2
Mathematische Grundlagen für Maschinelles LernenKU0434 L 545WiSe/SoSeKeine Angabe2
Pythonprogrammierung für ML und DatenanalyseKU0434 L 543WiSe/SoSeEnglisch2
Workshop Advanced Machine LearningVorlesungSoSeKeine Angabe2

Pflichtteil:

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWSVZ
Kognitive AlgorithmenIntegrierte Veranstaltung0434 L 502WiSe/SoSeKeine Angabe2

Arbeitsaufwand und Leistungspunkte

Anwendungen Kognitiver Algorithmen (Seminar):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Classical Topics in ML (Seminar):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Hot Topics In ML (Seminar):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Kognitive Algorithmen (Integrierte Veranstaltung):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Machine Learning and Data Management Systems (Seminar):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Mathematische Grundlagen für Maschinelles Lernen (KU):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Pythonprogrammierung für ML und Datenanalyse (KU):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Workshop Advanced Machine Learning (Vorlesung):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Das Modul gliedert sich in zwei Teile: • Integrierte Veranstaltung Kognitive Algorithmen: In der Vorlesung werden die Mechanismen elementarer Lernalgorithmen anschaulich erklärt und ihre Entstehung eingebettet in die Entwicklung unseres heutigen Verständnisses kognitiver Fähigkeiten von Maschinen. Im praktischen Teil werden Programmieraufgaben selbstständig bearbeitet. Die Vorlesung findet alle 2 Wochen statt. In den Wochen dazwischen finden begleitende Tutorien statt in denen der Vorlesungsstoff wiederholt und durch Übungsaufgaben gefestigt wird. • Wahlpflichtveranstaltung: Im Wahlpflichtbereich können die Teilnehmer:innen je nach Vorkenntnissen und Interessen verschiedene Schwerpunkte wählen. Der Wahpflichtteil besteht aus einer mehrtägigen Blockveranstaltung mit Frontalunterricht und betreuten Übungen. Die Seminarvorträge werden unter Anleitung von Betreuer:innen erarbeitet und in einem Blockseminar präsentiert und diskutiert.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Programmierkenntnisse, gute Grundlagen in Mathematik, insbesondere Linearer Algebra und Analysis. Der Kurs „Mathematische Grundlagen des Maschinellen Lernens" bietet eine kompakte Einführung bzw. Auffrischung dieser Themen. Da die wissenschaftliche Literatur in englischer Sprache verfasst ist, sind gute Englischkenntnisse erforderlich.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

1. Voraussetzung
Kognitive Algorithmen: Übungsschein Wahlpflichtveranstaltung bestanden

Abschluss des Moduls

Benotung

benotet

Prüfungsform

Schriftliche Prüfung

Sprache

Deutsch/Englisch

Dauer/Umfang

90min

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
2 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Keine

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Christopher M. Bishop (2006) Pattern Recognition And Machine Learning , Springer.
Fahrmeir, R. Künstler, I. Pigeot, G. Tutz (2004) Statistik , Springer, 5. Auflage
G. Bamberg, F. Baur (2006) Statistik , Oldenbourg-Verlag, 12. Auflage
Goodfellow, Ian, Yoshua Bengio, Aaron Courville (2016) Deep learning. MIT press.
K. B. Petersen, M. S. Pedersen (2007) The Matrix Cookbook . Technical University of Denmark
L. Wasserman (2004) All of Statistics , Springer
Richard O. Duda, Peter E. Hart, David G. Stork (2001) Pattern Classification , Wiley (2. Auflage)
Trevor Hastie, Robert Tibshirani, Jerome Friedman (2001) The Elements of Statistical Learning , Springer.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Computational Engineering Science (Informationstechnik im Maschinenwesen) (M. Sc.)16SoSe 2022WiSe 2023/24
Human Factors (M. Sc.)212SoSe 2021WiSe 2023/24
Informatik (B. Sc.)16SoSe 2021WiSe 2023/24
Luft- und Raumfahrttechnik (M. Sc.)110SoSe 2021WiSe 2023/24
Medieninformatik (B. Sc.)16SoSe 2021WiSe 2023/24
Naturwissenschaften in der Informationsgesellschaft (B. Sc.)318SoSe 2021WiSe 2023/24
Physikalische Ingenieurwissenschaft (M. Sc.)222SoSe 2021WiSe 2023/24
Wirtschaftsinformatik (B. Sc.)211SoSe 2021WiSe 2023/24
Wirtschaftsingenieurwesen (B. Sc.)16SoSe 2021WiSe 2023/24
Wirtschaftsingenieurwesen (M. Sc.)112SoSe 2021WiSe 2023/24

Sonstiges

Keine Angabe