Zur Modulseite PDF generieren

#40516 / #4

SS 2017 - WS 2017/18

English

Probabilistic and Bayesian Modelling in Machine Learning and Artificial Intelligence - Seminar
Probabilistisches und Bayesianisches Modelling im Machinellen Lernen und Künstlicher Intelligenz - Seminar

3

Opper, Manfred

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34351600 FG Künstliche Intelligenz

Keine Angabe

Kontakt


MAR 4-2

Ruttor, Andreas

lehre@ki.tu-berlin.de

Lernergebnisse

Students have a profound knowledge of probabilistic models through independent work on a current field of research with the help of literature and independent elaboration of an example application. They are competent in presentating and explaining research topics in a talk.

Lehrinhalte

The seminar deals with current topics in the field of statistical modelling and inference. Example: application of Monte–Carlo-Methods on an inference problem.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Introduction to Computational GenomicsSEM0434 L 714SoSeKeine Angabe2

Arbeitsaufwand und Leistungspunkte

Introduction to Computational Genomics (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 90.0 Stunden. Damit umfasst das Modul 3 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Das Seminar beinhaltet das Einarbeiten in aktuelle Literatur und die Entwicklung eines Vortrages.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Vorausgesetzt werden Grundkenntnisse in Mathematik (Lineare Algebra, Analysis, Stochastik) sowie Programmierkenntnisse.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Ergebnisprüfung) Beispielanwendung40praktisch20 Minuten
(Ergebnisprüfung) Präsentation60mündlich45 Minuten

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

Die Gesamtnote gemäß § 47 (2) AllgStuPO wird nach dem Notenschlüssel 2 der Fakultät IV ermittelt.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 12.

Anmeldeformalitäten

Die Anmeldung zur Lehrveranstaltung erfolgt über die ISIS-Seite. Dies ersetzt nicht die Prüfungsanmeldung beim Prüfungsamt, bzw. in QISPOS.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Information Theory, Inference, and Learning Algorithms, David J C MacKay, Cambridge University Press.
Pattern Recognition and Machine Learning, Christopher M. Bishop, Springer, 2006.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Service-Veranstaltung für andere Studiengänge (vor allem aus dem natur- und ingenieurwissenschaftlichen Bereich und der Mathematik und Statistik)

Sonstiges

Keine Angabe