Zur Modulseite PDF generieren

#40362 / #7

WiSe 2021/22 - SoSe 2022

English

Brain-Computer Interfacing

9

Blankertz, Benjamin

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34355200 FG S-Professur Neurotechnologie

Keine Angabe

Kontakt


MAR 4-3

Wagner vom Berg, Gabriel Leander

contact@neuro.tu-berlin.de

Lernergebnisse

Students know the essential concepts of Brain-Computer Interfacing (BCI). They are capable of applying methods of biomedical signal processing and single-trial classification to neural data. They can provide an interpretation of the outcome of their analysis in a statistical as well as in a neurophysiological manner. They have deeper knowledge about special topics of BCI research in data analysis of physiological signals.

Lehrinhalte

IL: Approaches to Brain-Computer Interfacing (BCI); Event-related potentials (ERPs); Spatial filters; Multivariate analysis of brain signals; Single-trial classification of spatio-temporal features; Regularized discriminant analysis (RDA); The linear model (forward and backward) of EEG; Interpretation of spatial patterns and filters; Modulation of spontaneous brain rhythms; Event-related synchronization and desynchronization (ERS, ERD); Common spatial pattern (CSP) Analysis; Classification of spatio-spectral features; Signal decomposistion methods; Supervised and unsupervised methods of adaptation in the classification of EEG; Experimental design SE: Examplary topics: Neural correlates of attention in free viewing, Predictors of BCI Performance, Co-adaptive Systems, Control by Spatial Attention; Hybrid BCIs, Multimodal BCIs

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Brain-Computer InterfacingIV3435 L 501WiSeKeine Angabe4
Current Topics in Brain-Computer InterfacingSEM3435 L 502WiSeKeine Angabe2

Arbeitsaufwand und Leistungspunkte

Brain-Computer Interfacing (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Bearbeitung der Übungsaufgaben10.06.0h60.0h
Präsenzzeit15.04.0h60.0h
Vor-/Nachbereitung15.02.0h30.0h
Vorbereitung für die Prüfungen2.015.0h30.0h
180.0h(~6 LP)

Current Topics in Brain-Computer Interfacing (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance3.05.0h15.0h
Pre/post-processing1.075.0h75.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 270.0 Stunden. Damit umfasst das Modul 9 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The integrated lecture (IL) consists of a lecture (mainly teacher-centered, with some period of group work) and assignments. The latter require independently solving programming exercises and working on complex tasks under guidance of a tutor. Talks in the seminar (SE) are developed independently with the guidance of a tutor. They are presented and discussed at one or two days in the second half of the semester.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

* Mandatory: programming skills; background in mathematics, in particular linear algebra and probability theory. * Helpful, but not obligatory: Basic knowledge in signal processing and machine learning. For the practical session basic knowledge in electrostatics and electronics are of advantage.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte pro Element

Sprache(n)

English

Prüfungselemente

NameGewichtKategorieDauer/Umfang
(Deliverable assessment / Ergebnisprüfung): 10 Assignments / Hausaufgaben (Übungszettel)15praktischjeweils 6h
(Deliverable assessment / Ergebnisprüfung): Talk in the seminar / Vortrag zum Seminar25mündlich30 min
(Examination / Punktuelle Leistungsabfrage): 2 written exams / schriftliche Tests60schriftlichjeweils 60 min

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

The grade is determined according to § 47 (2) AllgStuPO with the grading system 2 of faculty IV. * Exercises: Concurrent to the lecture, there will be a tutorial in which ten assignment sheets have to be solved. These are devoted to practical EEG analysis (programming). * Written exams: In the first half and in the second half of the lecture, there will a written test of about 60 minutes. * Seminar talk: Presentation of a research topic (orally with slides)

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 50.

Anmeldeformalitäten

Registration is not required, but stating the interest to participate in the lecture is welcome for the planning of resources. * Either email to Sekr. MAR 4-3: Imke Weitkamp <imke.weitkamp@tu-berlin.de> * or register in the respective courses in the information system at https://isis.tu-berlin.de/

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Blankertz B, Lemm S, Treder MS, Haufe S, Müller KR, Single-trial analysis and classification of ERP components - a tutorial, Neuroimage, 56:814-825, 2011.
Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR, Optimizing Spatial Filters for Robust EEG Single-Trial Analysis, IEEE Signal Process Mag, 25(1):41-56, 2008.
Dornhege G, R. Millán J d, Hinterberger T, McFarland D, Müller K (eds), Toward Brain-Computer Interfacing, MIT Press, 2007.
Parra LC, Spence CD, Gerson AD, Sajda P. Recipes for the Linear Analysis of EEG, Neuroimage, 28(2):326-341, 2005.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe