Zur Modulseite PDF generieren

#40362 / #1

SS 2014 - WS 2014/15

English

Brain-Computer Interfacing

9

Blankertz, Benjamin

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34355200 FG S-Professur Neurotechnologie

Keine Angabe

Kontakt


MAR 4-3

Wagner vom Berg, Gabriel Leander

contact@neuro.tu-berlin.de

Lernergebnisse

Keine Angabe

Lehrinhalte

IL: Forward and Backward Model of EEG; Event-related Potentials; Spatial Filters; Multivariate Analysis of Brain Signals; Single-Trial Classification of Spatio-Temporal Features; Regularized Discriminant Analysis; Interpretation of Spatial Patterns and Filters; Modulation of Brain Rhythms; Event-Related Synchronization and Desynchronization; Common Spatial Pattern Analysis; Classification of Spatio-Spectral Features; Coherency Analysis; Multi-Subject Learning; Experimental Design. SE: Beispielthemen: Predictors of BCI Performance, Co-adaptive Systems, Control by Spatial Attention; Hybrid BCIs, Multimodal BCIs

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Brain-Computer InterfacingIV3435 L 501WiSeKeine Angabe4
Current Topics in Brain-Computer InterfacingSEM3435 L 502WiSeKeine Angabe2

Arbeitsaufwand und Leistungspunkte

Brain-Computer Interfacing (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.04.0h60.0h
Vor-/Nachbereitung15.08.0h120.0h
180.0h(~6 LP)

Current Topics in Brain-Computer Interfacing (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 270.0 Stunden. Damit umfasst das Modul 9 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Die integrierte Lehrveranstaltung besteht aus einem Vorlesungsteil (Frontalunterricht vor allen Teilnehmern zur Vermittlung des Stoffes) und einem Anteil praktischer Arbeit. Letztere besteht aus dem selbstständigen Bearbeiten von Übungsaufgaben und der Bearbeitung einer komplexeren Fragestellung unter Anleitung eines Assistenten. Die Seminarvorträge werden unter Anleitung eines Betreuers erarbeitet und in einem Blockseminar in der zweiten Hälfte des Semesters präsentiert und diskutiert.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Programmierkenntnisse, gute Grundlagen in Mathematik, insbesondere Lineare Algebra und Wahrscheinlichkeitstheorie. Grundlagen der Signalverarbeitung und des maschinellen Lernens sind ratsam, jedoch bei solidem theoretischen Vorwissen nicht zwingend erforderlich.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

Keine Angabe

Sprache(n)

English

Prüfungselemente

NamePunkte/GewichtKategorieDauer/Umfang
Präsentation im Seminar25Keine AngabeKeine Angabe
Prüfung IL (schriftlich oder mündlich)60Keine AngabeKeine Angabe
Übungsaufgaben15Keine AngabeKeine Angabe

Notenschlüssel

Keine Angabe

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Informationen zur Anmeldung sind über das Sekretariat des Fachgebiets NT erhältlich.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Blankertz B, Lemm S, Treder MS, Haufe S, Müller KR, Single-trial analysis and classification of ERP components - a tutorial, Neuroimage, 56:814-825, 2011.
Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR, Optimizing Spatial Filters for Robust EEG Single-Trial Analysis, IEEE Signal Process Mag, 25(1):41-56, 2008.
Dornhege G, R. Millán J d, Hinterberger T, McFarland D, Müller K (eds), Toward Brain-Computer Interfacing, MIT Press, 2007.
Parra LC, Spence CD, Gerson AD, Sajda P. Recipes for the Linear Analysis of EEG, Neuroimage, 28(2):326-341, 2005.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe