Zur Modulseite PDF generieren

#40042 / #4

SoSe 2020 - SoSe 2021

English

Models of Neural Systems

12

Obermayer, Klaus

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34351300 FG Neuronale Informationsverarbeitung

Keine Angabe

Kontakt


MAR 5-6

Velenosi, Lisa Alexandria

graduateprograms@bccn-berlin.de

Lernergebnisse

After this module, students will know: - the basic concepts of computational neuroscience, their theoretical foundation, and the most common models used - the relevant basic neurobiological knowledge and the relevant theoretical approaches as well as the findings resulting form these approaches so far - strengths and limitations of the different models - how to appropriately choose the theoretical methods for modeling neural systems - how to apply these methods while taking into account the neurobiological findings - how to critically evaluate results obtained. - how to adapt models to new problems as well as to develop new models of neural systems.

Lehrinhalte

This module provides basic knowledge about the constituents of neural systems and their modeling, which includes basic neurobiological concepts and models concerning information processing within neurons and neural circuitry. Specific topics addressed are: - Electrical properties of neurons (Nernst equation, Goldman equation, Goldman-Hodgkin-Katz current equation, membrane equation) - Hodgkin-Huxley model (voltage-dependent conductances, gating variables, transient and persistent conductances, action-potential generation) - Channel models (state diagram, stochastic dynamics) - Synapse models (chemical and electrical synapses) - Single-compartment neuron models (integrate-and-fire, conductance-based) - Models of dendrites and axons (cable theory, Rall model, multi-compartment models, action-potential propagation) - Models of synaptic plasticity and learning (release probability, short-term depression and facilitation, long-term plasticity, Hebbian rule, timing-based plasticity rules, supervised/unsupervised and reinforcement learning) - Network models (feedforward and recurrent, excitatory-inhibitory, firing-rate and stochastic, associative memory) - Phase-space analysis of neuron and network models (linear stability analysis, phase portraits, bifurcation theory

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Models of Neural Systems – Theoretical LectureVLWiSeKeine Angabe2
Models of Neural Systems – TutorialUEWiSeKeine Angabe2
Models of Neural Systems – Computer LabUEWiSeKeine Angabe2
Models of Neural Systems – Experimental LectureVLWiSeKeine Angabe2

Arbeitsaufwand und Leistungspunkte

Models of Neural Systems – Theoretical Lecture (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Lecture rehearsals/ individual studies15.02.0h30.0h
60.0h(~2 LP)

Models of Neural Systems – Tutorial (UE):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Homework assignments15.06.0h90.0h
120.0h(~4 LP)

Models of Neural Systems – Computer Lab (UE):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Homework assignments15.06.0h90.0h
120.0h(~4 LP)

Models of Neural Systems – Experimental Lecture (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Lecture rehearsals/ individual studies15.02.0h30.0h
60.0h(~2 LP)
Der Aufwand des Moduls summiert sich zu 360.0 Stunden. Damit umfasst das Modul 12 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The lecture part consists of teaching in front of the class. Participants are expected to rehearse topics after class, using their class notes as well as recommended book chapters, in preparation for the exercises and tutorials. Homework assignments are given on a regular basis, and must be usually solved within one or two weeks. These assignments cover analytical & mathematical exercises as well as numerical simulations & programming exercises. Working in small groups of two to three students is encouraged. Homework assignments and their solutions are discussed during the tutorial. In addition, selected topics presented during the lecture are rehearsed by the tutor as needed. Tutorials also cover brief mathematics primer, and recommendations are provided for students for the module “individual studies”, if deficits in their mathematical knowledge become obvious.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

- Mathematical knowledge: Analysis, linear algebra, probability calculus and statistics, on a level comparable to mathematics courses for engineers (worth 24 credit points) - Basic programming skills - Good command of the English language

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Voraussetzung
Leistungsnachweis »[CNS] Successful participation in the MNS tutorial«
Leistungsnachweis »[CNS] Successful participation in the MNS programming lab«

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English

Dauer/Umfang

35 Min.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 20.

Anmeldeformalitäten

Enrollment to the module is handled in the first class of each module component (cf. 3). Students must be present in person. Registration has to be done with the examination office (Prüfungsamt) of TU Berlin at least three working days prior to the examination date. sekr@ni.tu-berlin.de

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:
Lecture notes in paper form are sometimes made available during class.

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
01. Dayan, Abbott, Theoretical Neuroscience, MIT Press, 2001. (recommended)
02. Izhikevich, Dynamical Systems in Neuroscience, MIT Press, 2007. (recommended)
03. Johnston, Wu, Foundations of Cellular Neurophysiology, MIT Press,1995. (recommended)
04. Hertz, Krogh, Palmer, Introduction to the Theory of Neural Computation, Addison-Wesley, 1991. (additional)
05. Hille, Ion Channels of Excitable Membranes, Sinauer, 2001. (additional)
06. Koch, Biophysics of Computation, Oxford University Press, 1999. (additional)
07. Koch, Segev, Methods in Neuronal Modelling, MIT Press, 1998. (additional)

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Sonstiges

Responsible for this module are: Prof. Dr. Richard Kempter, HU Berlin (r.kempter@biologie.hu-berlin.de) Prof. Dr. Benjamin Lindner, HU Berlin (benjamin.lindner@physik.hu-berlin.de)