Zur Modulseite PDF generieren

#31027 / #1

WiSe 2022/23 - WiSe 2022/23

English

Data Science for Energy System Modelling
Data Science für Energiesystemmodellierung

6

Brown, Thomas William

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät III

Institut für Energietechnik

33371400 FG Digitaler Wandel in Energiesystemen

MSc Regenerative Energiesysteme

Kontakt


TA 8

Neumann, Fabian

f.neumann@tu-berlin.de

Lernergebnisse

Students are in the position to: - undertake evaluations of geographical and socio-economic renewable energy potentials - describe and explain the challenges when integrating renewable energy in energy systems - critically appraise different concepts for the integration of renewable energy (networks versus storage) - perform analysis based on techno-economic energy system models independently and interpret the solutions - process large-scale public datasets to retrieve geographical, meteorological and energy systems information - program optimization-based energy system models with widely-used open-source tools and public data

Lehrinhalte

This module will cover the modelling and analysis of future energy systems, with a focus on renewable energy resources and how storage and network infrastructures can aid their integration into the energy system. Directly from the start of the course, students will be exposed to working with real data regarding historical weather data, land eligibility constraints, existing power plant fleets, transmission network data, electricity markets, and demand time series to learn about the challenges and solutions for a successful transition towards climate-neutral energy systems across the globe. Topics of the course include: - Time series analysis of wind and solar generation and energy demands. - GIS-based evaluation of renewable energy potentials. - Modelling of daily and seasonal energy storage. - Modelling of power flows and transmission networks. - Introduction to mathematical optimization (or repetition thereof). - Electricity market designs with renewable electricity (merit order, market values, re-dispatch, nodal pricing) - System planning of renewables deployment, energy storage and transmission infrastructure. - Modelling of sector-coupling and demand-side management (examples from industry, buildings or transport). - Modelling under uncertainty and methods of complexity reduction. - Programming of energy system models in Python (e.g. pandas, geopandas, PyPSA and atlite). - Visualization and communication of energy system analysis.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Data Science for Energy System ModellingIVWiSeen4

Arbeitsaufwand und Leistungspunkte

Data Science for Energy System Modelling (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.04.0h60.0h
Class preparation and follow-up15.02.0h30.0h
Preparation of assignments5.018.0h90.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The course will follow a hands-on didactic approach. Introductory lectures will familiarize the students with each covered topic. Workshops will then introduce open-source tooling to address the topic and offer guidance on programming in Python. The students will demonstrate their learning progress individually throughout the semester in assignments that include programming as well as analysis. During this process, students will successively build, run and communicate the results of their own energy system models.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

- Basic knowledge of mathematics, linear algebra, and statistics is assumed. - Basic knowledge of programming in Python or other languages is helpful, but not required. - The course is complementary to the courses "Energy Systems" and "Energy Economics".

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
Individual Homework 1 (renewable potentials)20schriftlich18h
Individual Homework 2 (storage and networks)20schriftlich18h
Individual Homework 3 (electricity markets)20schriftlich18h
Individual Homework 4 (system planning)20schriftlich18h
Group Presentation (sector-coupling, uncertainty analysis)20mündlich18h

Notenschlüssel

Notenschlüssel »Notenschlüssel 6: Fak III (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt90.0pt85.0pt80.0pt75.0pt70.0pt66.0pt62.0pt58.0pt54.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

Students program their own energy system models individually in four homework assignments with guiding tasks and questions. The final examination element is a presentation on one of the advanced topics in small groups of up to 3 students.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Wintersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Course materials and announcements will be distributed through the ISIS platform.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Strbac, G., Kirschen, D., 2019. Fundamentals of Power System Economics, 2 ed. WILEY.
Taylor, J.A., 2015. Convex Optimization of Power Systems. Cambridge University Press.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

Sonstiges

Keine Angabe