Zur Modulseite PDF generieren

#20757 / #1

WiSe 2020/21 - WiSe 2024/25

English

Höhere Atom- und Molekülphysik

12

Smirnova, Olga

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät II

Institut für Optik und Atomare Physik

Keine Angabe

Physik

Kontakt


EW 3-1

Smirnova, Olga

smirnova@tu-berlin.de

Lernergebnisse

The module Advanced Atomic and Molecular Physics offers lectures and extensive exercises and projects presenting the key physical concepts, the key experiments and theoretical tools of modern Atomic, Molecular and Optical Physics (AMOP) with the focus on Atomic Physics (Attosecond Physics + Advanced Atomic Physics, Track I) and links to quantum information or with the focus on Molecular Physics and links to soft and condensed matter (Attosecond Physics + Intermolecular Forces, Track II). (Track I) Upon completion of Track I, the students will learn the following key concepts, experimental and theoretical tools: (i) Key concepts: Entanglement, laser cooling and trapping, Bose-Einstein condensation, cold Rydberg gases and long-range many-body interaction, time and frequency standards, free electron lasers (FELs), ionization, laser-dressed atoms, optical tunnelling, tunnelling time, sub-laser-cycle dynamics, quantum trajectories, rescattering, high harmonic generation, Kramers-Henneberger atom, electron spin-polarization, circular dichroism, chirality, quantum computer. (ii) Experimental tools: Development of precision spectroscopy with (ultra-)cold atom gases and single atoms or ions, the experimental realization of entangled atomic states in ion traps and cold Rydberg gases, time-resolved spectroscopy using novel intense short pulsed lasers, (supersonic) molecular beam, vacuum techniques, storage of charged and neutral particles, most recent laser and electron/ion spectroscopic detection techniques (frequency comb, reaction microscope). (iii) Theoretical Tools: Multichannel quantum defect theory, autoionization and Fano theory , time-dependent quantum mechanics and wavepacket dynamics, Keldysh theory and strong-field S-matrix methods, time-dependent semi-classical methods and quantum trajectories, Kramers-Henneberger approach, methods for numerical solution of time-dependent Schrödinger equation in strong laser fields, applications of quantum chemistry methods to time-dependent molecular response including non-Hermitian quantum mechanics. At the end of the course, the students will be able to competently apply the above theoretical tools to analyse and design the experiments aimed at imaging electron dynamics in atoms and molecules and high resolution spectroscopy. (Track II) Upon completion of Track II , the students will learn the following key concepts, experimental and theoretical tools. (i) Key concepts: Intermolecular interaction potential, Pauli repulsion, dispersion and van der Waals forces, hydrogen bonds, proton transfer, proton tunnelling, zero-point energy, dissociation, ionization, laser-dressed electronic states, optical tunnelling, tunnelling time, sub-laser-cycle field driven dynamics, quantum trajectories, rescattering, high harmonic generation, Kramers-Henneberger atom, spin-polarization, molecular chirality. (ii) Experimental tools: molecular spectroscopy, scattering experiments, tools for probing intermolecular potentials, differences to chemical bonds, long-range and short-range contributions. (iii) Theoretical tools: Methods for determination of intermolecular potentials, differences to chemical bonds, long-range and short-range contributions, classical and quantum mechanical description of intermolecular forces, time-dependent quantum mechanics, wavepacket dynamics, Keldysh theory and strong-field S-matrix methods, time-dependent semiclassical methods and quantum trajectories, Kramers-Henneberger approach, methods for numerical solution of time-dependent Schrödinger equation in strong laser fields, applications of quantum chemistry methods to time-dependent molecular response including non-Hermitian quantum mechanics. At the end of the course, the students will be able to competently apply the above theoretical tools to analyze and design the experiments aimed at intermolecular potentials, imaging electron dynamics in atoms and molecules and high resolution spectroscopy or/and quantum information processing.

Lehrinhalte

SS: Attosecond Physics Nonlinear light-matter interaction: from one-photon to multi-photon processes. Electronic response to strong low-frequency fields: optical tunnelling and the Keldysh formalism. Above threshold ionization and related phenomena. Electron motion after strong-field ionization and its consequences: high harmonic generation, laser-induced electron diffraction and holography, correlated multi-electron processes. Ionization in circularly polarized fields and generation of attosecond spin-polarized electron beams. Attoclock and the tunnelling time problem. High harmonic spectroscopy in atoms and molecules: combining sub-angstrom spatial and sub-femtosecond temporal resolution. Generation and characterization of attosecond pulses and pulse trains. Time-resolved spectroscopy of electron dynamics using attosecond pulses. Ultrafast chirality: inducing and detecting electron currents in chiral molecules, extremely efficient chiral discrimination of molecules. Evolution of attosecond spectroscopy from atoms and molecules to solids: towards all-optical imaging of topological properties and phase transitions. WS (Track I): Advanced Atomic Physics Quantum mechanics of simple and complex atoms, simple quantum mechanical model systems entangled states, perturbation theory, experimental techniques (vacuum and atomic beam generation, ion/electron spectrometer, reaction microscope), laser techniques, Rydberg atoms, atoms in external fields, photoionization, Fano theory , multichannel quantum defect theory, atoms in strong laser fields, x-ray spectroscopy, free electron lasers, light-atom interaction in two and three level systems, precision spectroscopy, fundamental experiments, trapping and (laser) cooling of atoms and ions, Bose-Einstein condensation, atomic physics experiments for quantum computing and simulation. WS (Track II): Intermolecular Forces Examples and importance of intermolecular interactions in physics, chemistry, biology, and pharmacy; experimental and theoretical methods for determination of intermolecular potentials; differences to chemical bonds; long-range and short-range contributions; radial and angular dependence of individual components (electrostatic, induction and polarization, London dispersion, resonance forces, Pauli repulsion); classical and quantum mechanical description; properties and spectroscopic analysis of hydrogen bonds (definition, energy, geometry, importance, infrared spectrum, tunneling processes, proton transfer, zero-point energy effects, examples); van der Waals forces; types of crystals; properties of liquids; dynamics of intermolecular forces (energy dissipation, coupling, dissociation).

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Attosecond PhysicsUE3237 L 1091SoSeen2
Attosecond PhysicsVL3237 L 10913SoSeen4

Keine Angabe

Aus den folgenden Veranstaltungen muss eine Veranstaltung abgeschlossen werden.

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Höhere AtomphysikIV3237 L 362BIVWiSede2
Zwischenmolekulare WechselwirkungenIV3237 L 362IVWiSede2

Arbeitsaufwand und Leistungspunkte

Attosecond Physics (UE):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)

Attosecond Physics (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.04.0h60.0h
Pre/post processing15.08.0h120.0h
180.0h(~6 LP)

Höhere Atomphysik (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)

Zwischenmolekulare Wechselwirkungen (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 360.0 Stunden. Damit umfasst das Modul 12 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

Lectures with exercises, projects, and laboratory tours

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Experimental Physics I-IV (mechanics, electromagnetism, optics, atomic and molecular physics, quantum physics). Theoretical Physics I-II (classical and quantum mechanics).

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Voraussetzung
Leistungsnachweis »Leistungsnachweis Attosecond Physics«
Leistungsnachweis »Leistungsnachweis Höhere Atomphysik« oder
Leistungsnachweis »Leistungsnachweis Zwischenmolekulare Wechselwirkungen«

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English, German

Dauer/Umfang

ca. 30 min.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
2 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Oral exams are registered via the electronic registration system after making an appointment with the examiner.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar

 

Literatur

Empfohlene Literatur
Attosecond and XUV Physics: Ultrafast Dynamics and Spectroscopy, Editors: Thomas Schultz, Marc Vrakking
Chang, Zenghu. Fundamentals of attosecond optics. CRC press, 2016.
F Krausz, M Ivanov, Reviews of Modern Physics 81 (1), 163, 2009
A.J. Stone, The Theory of Intermolecular Forces, Clarendon Press, Oxford, 1996
G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular Forces, Clarendon, Oxford, 1981
J. Israelachvili, Intermolecular and Surface Forces, Academic Press, New York 1992
C.J. Foot, Atomic Physics (Oxford Master Series in Atomic, Optical and Laser Physics), Oxford University Press
Hertel, Schulz, Atome, Moleküle und optische Physik 1, 2. Auflage 2017, Springer Lehrbuch
Hertel, Schulz, Atome, Moleküle und optische Physik 2, 2020, Springer Lehrbuch
Metcalf, van der Straten, Laser Cooling and Trapping (Graduate Texts in Contemporary Physics), Springer
Gallagher, T. (1994). Rydberg Atoms (Cambridge Monographs on Atomic, Molecular and Chemical Physics). Cambridge: Cambridge University Press

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Studierende anderer Studiengänge können dieses Modul ohne Kapazitätsprüfung belegen.

This module can be chosen as Experimentelles Wahlpflichfach.

Sonstiges

Depending on the preference of the participating students, parts of the module are taught in German or English language.