Zur Modulseite PDF generieren

#41089 / #1

Seit SoSe 2023

English

Recent Trends in Deep Learning for Computer Vision

3

Demir, Begüm

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Technische Informatik und Mikroelektronik

34342200 FG Remote Sensing Image Analysis

Keine Angabe

Kontakt


EN 5

Witte, Bethany Jane

b.witte@tu-berlin.de

Lernergebnisse

Participants of this seminar acquire advanced knowledge in the field of deep learning for computer vision. After completing this course, the students are capable of conducting a literature search, contextualizing scientific papers and presenting topics drawn from the deep learning and computer vision literature. Moreover, students participate in scientific discussions and have an opportunity to sharpen their critical thinking skills.

Lehrinhalte

The seminar aims to deepen the understanding of the participants in current research problems at the intersection of deep learning and computer vision. The topics include, yet are not limited to: - The evolution of CNN architectures (depth, layer composition, activation functions, drop out); - Vision transformers (attention mechanism, basic and advanced architectures); - Data augmentation techniques (basic techniques, MixUp, CutOut, AutoAug, RandAug, etc.); - Semi-supervised learning (temporal ensembling, mean teacher, co-teaching, consistency loss and pseudo-labeling, MixMatch, ReMixMatch, etc.); - Self-supervised learning (foundations of representation learning, pre-text tasks, contrastive loss, triplet loss, SimCLR, BYOL, SimSiam, etc.); - Diffusion Models and Dall-E 2 (current breakthroughs in fusion of semantics of text and image, generative modeling); - Explainable AI (clever hans phenomena, backprogation based method, gradient-based methods); - Optimization theory of neural networks; - Learning and generalization theory of neural networks (shortcut learning, forgetting/memorization events, layer importance, sample difficulty, learning paths, learning bias in texture/shape).

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Recent Trends in Deep Learning for Computer VisionSEMSoSeen2

Arbeitsaufwand und Leistungspunkte

Recent Trends in Deep Learning for Computer Vision (SEM):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 90.0 Stunden. Damit umfasst das Modul 3 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

At the beginning of the semester, there will be an overview lecture that will serve as an introduction to the current research problems in deep learning and computer vision. In addition, a set of primary literature works will be provided to assist the students to choose their topic. A follow-up lecture will guide the students through the process of how to work with scientific papers and write a scientific report. Then, the students will independently investigate the topics assigned to them and prepare a presentation. For the remaining part of the semester, each class will cover one of the course topics. Two students assigned to one topic will give a presentation of approximately 40 minutes (20 minutes each) that will be followed by a group discussion with all participants of the seminar. In addition to the talk, the students will also prepare a scientific report on their topic of approximately 10-15 pages.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Good knowledge in Mathematics, especially linear algebra and statistics, are required. The courses Machine Learning I and Machine Learning II or an equivalent should have been completed. Further, the students should have a basic understanding of deep learning which they gained through additional lectures, projects, or seminars. It is recommended to have worked with scientific literature before. This course is particularly designed for students that are in the last semester before writing their master thesis and have a strong interest in deep learning and computer vision.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Deliverable assessment) Seminar Presentation50mündlichapprox. 20 minutes
(Deliverable assessment) Written Seminar Report50schriftlich10-15 pages

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

There are are two portfolio deliverable assessments: 1) a long seminar presentation including a discussion (50 points) and 2) a written seminar report (50 points).

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 18.

Anmeldeformalitäten

Students intending to take this seminar need to follow the instructions on the ISIS course page for pre-semester application. Within the first 6 weeks after the commencement of the seminar, students will have to register for the module at Moses (MTS) and additionally at ISIS (TU Berlin's variant of 'Moodle') for teaching materials and communication.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Mahmoud Hassaballah and Ali Ismail Awad. "Deep Learning in Computer Vision Principles and Applications". CRC Press, 2020. isbn: 978-1-138-54442-0
Ian Goodfellow, Yoshua Bengio, and Aaron Courville. "Deep Learning". MIT Press, 2016. ISBN: 978-0-262-03561-3
Mohamed Elgendy. "Deep Learning for Vision Systems". Manning Publications, 2020. ISBN: 978-1-61729-619-2

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Computer Engineering (M. Sc.)125SoSe 2023SoSe 2025
Computer Science (Informatik) (M. Sc.)120SoSe 2023SoSe 2025
Elektrotechnik (M. Sc.)110SoSe 2023SoSe 2025

Sonstiges

Keine Angabe