Zur Modulseite PDF generieren

#41021 / #1

SoSe 2021 - WiSe 2024/25

English

Event-based Robot Vision Project

9

Gallego, Guillermo

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Technische Informatik und Mikroelektronik

34342000 FG Robotic Interactive Perception

Keine Angabe

Kontakt


MAR 5-5

Gallego, Guillermo

guillermo.gallego@tu-berlin.de

Lernergebnisse

Participants of this project course will gain practical experience in applying techniques from event-based and computer vision to solve problems in robot perception (motion estimation, recognition, etc.). Participants will work individually or in a small team collaboratively, and will acquire knowledge about the state-of-the-art on event-based vision related to the chosen problem.

Lehrinhalte

Event-based vision is an emerging technology that promises to offer advantages to overcome some of the limitations of traditional, frame-based cameras and visual processing pipelines (from sensors to output, actionable information), such as latency, dynamic range, bandwidth and power consumption. To unlock the advantages of event-based cameras, new algorithms are needed to process their unconventional output (a stream of asynchronous pixel-wise intensity changes, as opposed to the familiar video images of standard cameras). This project is related to the investigation and development of tailored algorithms and methods to tackle specific problems in event-based vision (motion estimation, segmentation, object detection and recognition, etc.). At the beginning of the module, students receive or select project topics from a list of possible ones, as well as some introductory material related to the chosen problem. After setting the project teams and topics, the suitable tools to carry out the project are discussed and set up. The students prepare a project plan, specify the data on which they will be working on and the steps that are anticipated for a successful completion of the project. During the remaining weeks the students develop their projects and discuss the progress with the instructor, to guide future action items. At the end of the project, the students present their findings to other students in the module, with an oral presentation. They summarize not only the technical outcome of the project but also the difficulties and lessons learned during the project. The general topics include but are not limited to: - Algorithms: visual odometry, SLAM, 3D reconstruction, optical flow estimation, image intensity reconstruction, recognition, stereo depth reconstruction, feature/object detection, tracking, calibration, sensor fusion (video synthesis, visual-inertial odometry, etc.). - Event camera datasets and/or simulators. - Event-based signal processing, representation, control, bandwidth control. - Event-based active vision, event-based sensorimotor integration. - Applications in: robotics (navigation, manipulation, drones...), automotive, IoT, AR/VR, space science, inspection, surveillance, crowd counting, physics, biology. - Model-based, embedded, or learning approaches. - Novel hardware (cameras, neuromorphic processors, etc.) and/or software platforms. - New trends and challenges in event-based and/or biologically-inspired vision (SNNs, etc.). - Event-based vision for computational photography. A longer list of related topics is available in the table of content of this repository: https://github.com/uzh-rpg/event-based_vision_resources/

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Event-based Robot VisionPJ 3434 L 11007WiSe/SoSeKeine Angabe6

Arbeitsaufwand und Leistungspunkte

Event-based Robot Vision (PJ):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.06.0h90.0h
Pre/post processing15.012.0h180.0h
270.0h(~9 LP)
Der Aufwand des Moduls summiert sich zu 270.0 Stunden. Damit umfasst das Modul 9 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

This module contains a guided and self-organized project work, supervised by the instructor's guidance. The students receive a brief overview of the fundamentals and the recent developments in the area of event-based vision. Students work individually or in small teams on a chosen topic, and they present progress during the course as they are implementing their projects. At the end of the course, each team presents insights, methods, results and lessons learned in a final presentation. Finally, projects (code, dataset, etc.) are documented and reported in the form of a report and/or github/gitlab repository.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Solid programming skills are required in at least one of the following programming languages: C++, Python. Basic knowledge in robotics, machine learning and computer vision is required. Knowledge of ROS (Robot Operating System) is desirable.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Deliverable assessment) Final presentation25mündlich25 minutes
(Deliverable assessment) Implementation40praktischapprox 120 hours
(Deliverable assessment) Intermediate presentation20mündlich20 minutes
(Deliverable assessment) Technical documentation15schriftlich8 page, repository

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

The overall grade for the module consists of the results of the course work ('portfolio exam'), with the following parts: 1. Intermediate presentation (20p): The students present their initial findings and results on their topic. 2. Implementation (40p): Code, prototype implementation of the solution to the proposed problem. 3. Final presentation (25p): The students present their final findings/results and lessons learned from the project. 4. Technical Documentation (15p): The students submit their cleaned-up code (e.g., gitlab repository), with user-friendly instructions ready to be executed by colleagues, and also prepare a short technical written scientific summary of the project.

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 15.

Anmeldeformalitäten

Students intending to take this project course need to follow the instructions on the RSiM website for pre-semester application. Within the first 4 weeks after the commencement of the project, students will have to register for the module at QISPOS (university examination protocol tool) and, additionally, at ISIS for teaching materials and communication.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  nicht verfügbar

 

Literatur

Empfohlene Literatur
Digital Image Processing, Gonzalez and Woods. Pearson
Event-based Vision: A Survey. Gallego et al., IEEE TPAMI 2020
R. Szeliski, Computer Vision: Algorithms and Applications, Springer, 2nd Edition

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Sonstiges

- Kognitive Systeme - Automatisierungstechnik