Zur Modulseite PDF generieren

#40828 / #3

WS 2018/19 - SoSe 2020

English

Modern Wireless Communications

6

Stanczak, Slawomir

Benotet

Mündliche Prüfung

English

Zugehörigkeit


Fakultät IV

Institut für Telekommunikationssysteme

34331800 FG Netzwerk- und Informationstheorie

Keine Angabe

Kontakt


HFT 6

Reinhardt, Kerstin

sekretariat@netit.tu-berlin.de

Lernergebnisse

After completing this module, the students will have a basic knowledge of wireless communications systems and they will be able to master some fundamental mathematical methods that are widely used in the analysis and optimization of modern wireless communications systems. In particular, the students will learn how to model the wireless channel and how to exploit the spatial diversity using multiple antenna systems. Further, the lectures intend to convey a basic understanding of modulation and multiple access techniques such as CDMA and OFDMA. Finally, the lectures will provide initial insights into the design of wireless communication networks in the context of the evolving fields of Internet-of-Things, Industry 4.0, intelligent transportation, and smart grids. Regarding the mathematical methods for the analysis and optimization of wireless communications systems, the students will learn how to use mathematical methods when designing modern wireless communications networks. In doing so the lectures will combine the mathematical precision with practical examples. As a result, the acquired knowledge will enable the students to better understand complex interdependencies in such networks, which is essential for efficient design and operation of wireless networks.

Lehrinhalte

The learning content includes: - A brief overview of typical wireless communications scenarios, the main challenges and differences when compared with wired communications - Wireless channel as a time-varying linear system (time-varying impulse response), large-scale and small-scale fading, multi-path fading, existing approaches to modeling of wireless channels - Basic principles of stochastic modeling for wireless channels, Rayleigh and Rician channels, log-normal shadowing - Time-frequency correlation functions, wide-sense stationary uncorrelated scattering model, Doppler spread and coherence time, delay spread and coherence bandwidth, flat versus frequency-selective fading - Performance measures used in wireless communications: signal-to-noise ratio, rate, ergodic capacity, outage capacity, delay-limited capacity - Definitions of time, frequency and spatial diversity, other notions of diversity - Some basic diversity techniques including repetition coding, maximal ratio combiner (RAKE receiver), receive antenna diversity (SIMO), transmit antenna diversity (MISO), the impact of channel state information - Principles of spread-spectrum techniques and orthogonal frequency division multiplexing (OFDM) - Basic multiaccess techniques including TDMA, FDMA, DS-CDMA and OFDMA - Random access techniques including traditional ALOHA/slotted ALOHA and contemporary solutions based on coded random access - Enabling technologies for massive connectivity and efficient spectrum utilization, including massive MIMO systems and cloud-radio access networks (C-RANs) - Tradeoffs between throughput, reliability and latency in emerging communication scenarios including massive machine-type communications (mMTC), and ultra-reliable low-latency communications (URLLC) - Mathematical methods that are used to solve many real-world problems in modern wireless communications systems/networks. As concrete applications that are in the focus of the lectures, we cite interference reduction in spread spectrum and MIMO systems, adaptive beamforming, PAPR reduction in OFDM systems. In particular, a special attention is attached to the following topics: basic principles of (functional) analysis that are relevant in the design of modern communications systems, fundamentals of matrix analysis, fundamentals of (convex) optimization theory, Bayesian inference, graphical models, projection methods, principles of convex relaxation, algorithm design, convergence properties.

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Fundamentals of Digital Wireless CommunicationsVLWiSeKeine Angabe2
Selected Topics in Wireless Communications and NetworkingVLSoSeen2

Arbeitsaufwand und Leistungspunkte

Fundamentals of Digital Wireless Communications (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Präsenzzeit15.02.0h30.0h
Vor-/Nachbereitung15.04.0h60.0h
90.0h(~3 LP)

Selected Topics in Wireless Communications and Networking (VL):

AufwandbeschreibungMultiplikatorStundenGesamt
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
90.0h(~3 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

The module consists of conventional frontal teaching in class, developing theoretical and mathematical concepts, exercises developed in class, in order to develop problem-solving skills and reinforce comprehension of the theory, and homework exercises in order to develop independent and autonomous thinking skills in the students.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Prerequisite for participation to courses are a mathematical background at the level of beginning MS students in Electrical Engineering (multivariate calculus, signals and systems, linear algebra and notions of matrix theory). The course is open to students enrolled in any MSc in EE CS, Mathematics and Physics.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Oral exam

Sprache(n)

English

Dauer/Umfang

45 minutes

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
2 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Dieses Modul ist nicht auf eine Anzahl Studierender begrenzt.

Anmeldeformalitäten

Course teaching and organization (not module examination enrollment at Examination office/Prüfungsamt) is supported by an ISIS course. Registration details are provided at the beginning of the module.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
D. J. C. MacKay, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
D. Tse, Fundamentals of Wireless Communication, June 2005, Cambridge University Press
David G. Luenberger, Optimization by Vector Space Methods, Wiley, 1998
J. G. Proakis, Digital Communications, 4. Edition, Aug. 2000, McGraw-Hill
Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press, 2012
S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, 2004

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.

Sonstiges

Keine Angabe