Zur Modulseite PDF generieren

#40311 / #5

SS 2017 - SS 2018

English

Advanced Information Management 3 (AIM-3) Scalable Data Science: Systems & Methods (SDSSM)

6

Markl, Volker

Benotet

Portfolioprüfung

English

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34351500 FG Datenbanksysteme und Informationsmanagement (DIMA)

Keine Angabe

Kontakt


EN 7

Soto, Juan

sekr@dima.tu-berlin.de

Lernergebnisse

Lehrinhalte

The module will focus on mainstream distributed processing platforms and paradigms and learn how to employ these to solve challenging big data problems using popular data mining methods. Students will learn how to implement and employ varying data mining algorithms, such as Naïve Bayes, K-Means Clustering, and PageRank on varying open-source systems (e.g., Apache Hadoop, Apache Flink).

Modulbestandteile

Compulsory area

Die folgenden Veranstaltungen sind für das Modul obligatorisch:

LehrveranstaltungenArtNummerTurnusSpracheSWS ISIS VVZ
Advanced Information Management 3 (AIM-3) - Scalable Data Science: Systems & Methods (SDSSM)IV0434 L 472WiSe/SoSeKeine Angabe4

Arbeitsaufwand und Leistungspunkte

Advanced Information Management 3 (AIM-3) - Scalable Data Science: Systems & Methods (SDSSM) (IV):

AufwandbeschreibungMultiplikatorStundenGesamt
Exercises/Practice15.04.0h60.0h
Plenary sessions15.04.0h60.0h
Preparation & Consolidation (incl. literature studies)15.04.0h60.0h
180.0h(~6 LP)
Der Aufwand des Moduls summiert sich zu 180.0 Stunden. Damit umfasst das Modul 6 Leistungspunkte.

Beschreibung der Lehr- und Lernformen

This Integrated Course (Integrierte Veranstaltung, IV) consists of: (i) lectures on key concepts, (ii) practical theoretical & programming exercises, and (iii) student lead presentations (including literature search). Active participation and contributions to all parts of this course are essential.

Voraussetzungen für die Teilnahme / Prüfung

Wünschenswerte Voraussetzungen für die Teilnahme an den Lehrveranstaltungen:

Computer science topics addressed in TU Berlin modules in the Bachelor’s curriculum, particularly, the database course (“Information Systems and Data Analysis”) or the equivalent, as well as good Java programming skills are required. Basic knowledge in linear algebra, numerical analysis, probability, and statistics are strongly recommended. Furthermore, it is preferable if students have already completed (or are currently enrolled in) a machine-learning course. Since the course will be offered in English, fluency in English is also required.

Verpflichtende Voraussetzungen für die Modulprüfungsanmeldung:

Dieses Modul hat keine Prüfungsvoraussetzungen.

Abschluss des Moduls

Benotung

Benotet

Prüfungsform

Portfolio examination

Art der Portfolioprüfung

100 Punkte insgesamt

Sprache(n)

English

Prüfungselemente

NamePunkteKategorieDauer/Umfang
(Deliverable assessment) Homework30schriftlich30 hours / 20 pages
(Deliverable assessment) In-class presentations20mündlich40 min. / about 35 slides
(Examination) Written test50schriftlich75 min.

Notenschlüssel

Notenschlüssel »Notenschlüssel 2: Fak IV (2)«

Gesamtpunktzahl1.01.31.72.02.32.73.03.33.74.0
100.0pt95.0pt90.0pt85.0pt80.0pt75.0pt70.0pt65.0pt60.0pt55.0pt50.0pt

Prüfungsbeschreibung (Abschluss des Moduls)

The portfolio exam (worth 100 points) is comprised of three parts, namely: (i) written homework (30 points), (ii) in-class presentations (20 portfolio points), and (iii) a written exam (50 portfolio points). The final grade according to § 47 (2) AllgStuPO will be calculated with the faculty grading table 2. (Die Gesamtnote gemäß § 47 (2) AllgStuPO wird nach dem Notenschlüssel 2 der Fakultät IV ermittelt.)

Dauer des Moduls

Für Belegung und Abschluss des Moduls ist folgende Semesteranzahl veranschlagt:
1 Semester.

Dieses Modul kann in folgenden Semestern begonnen werden:
Winter- und Sommersemester.

Maximale teilnehmende Personen

Die maximale Teilnehmerzahl beträgt 30.

Anmeldeformalitäten

Students are required to register via the DIMA course registration tool before the start of the first lecture (http://www.dima.tu-berlin.de/). Within the first six weeks after commencement of the lecture, students will have to register for the course at QISPOS (university examination protocol tool) and ISIS (course organization tool) in addition to the registration at the DIMA course registration tool.

Literaturhinweise, Skripte

Skript in Papierform

Verfügbarkeit:  nicht verfügbar

 

Skript in elektronischer Form

Verfügbarkeit:  verfügbar
Zusätzliche Informationen:

 

Literatur

Empfohlene Literatur
Anand Rajaraman, Jeffrey David Ullman : Mining of Massive Datasets (Free Online: http://infolab.stanford.edu/~ullman/mmds/book.pdf)
Data Mining: Practical Machine Learning Tools and Techniques, Ian H. Witten and Eibe Frank, Morgan Kaufmann, 2011.
Hadoop: The Definitive Guide (4th Edition), Tom White, O’Reilly Media, 2015.
Supplementary reading material may be assigned to complement course lectures.

Zugeordnete Studiengänge


Diese Modulversion wird in folgenden Studiengängen verwendet:

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Dieses Modul findet in keinem Studiengang Verwendung.
This course targets Master’s students focused on Database Systems and Information Management in Computer Science (Major: System Engineering), Computer Engineering (Major: Information Systems & Software Engineering), and Industrial Engineering. Compulsory Elective module for ERASMUS MUNDUS IT4BI, plus Compulsory for EIT-ICT Data Science (DS) and Compulsory Elective for EIT-ICT Cloud Computing and Services (CCS) Subject to space availability, Master’s students in other academic programs may also enroll and satisfy elective module requirements. Wahlpflichtmodul im Masterstudiengang Informatik/Studienschwerpunkt System Engineering, Tech-nische Informatik/Studienschwerpunkte Informationssysteme & Software Engineering und im Master-studiengang Wirtschaftsingenieurswesen (Studiengang IuK). Wahlpflichtmodul im ERASMUS MUNDUS IT4BI, sowie für EIT-ICT Cloud Computing and Services (CCS), Pflicht für EIT-ICT Data Science (DS). Je nach Verfügbarleit der Plätze können auch Studierende anderer Fachrichtungen als Wahlpflicht das Modul belegen.

Sonstiges

Since 2014, this module is offered each summer and winter term. For each topic during this course additional research papers and reports will be used.