Navigation To modulepage
Display language

Treatment Effect Analysis

6

English

#70251 / #5

Seit WS 2019/20

Fakultät VII

H 57

Institut für Volkswirtschaftslehre und Wirtschaftsrecht

37312100 FG Ökonometrie und Wirtschaftsstatistik

Werwatz, Axel

Repasky, Tomas

axel.werwatz@tu-berlin.de

POS-Nummer PORD-Nummer Modultitel
120350 19094 Treatment Effect Analysis

Learning Outcomes

An understanding of the predominant statistical model of causality. Knowledge of the definition and sources of selection bias. Understanding how randomized experiments in principle identify causality. A sound understanding of estimators of average causal effects based on non-experimental data, particularly their identifying assumptions and data requirements.

Content

Rubin Model of Causality, Roy Model, Causality and Regression Notation, Experiments, Conditional Independence, Matching, Regression, Heckman Switching Regression, Instrumental Variables, DID + Panel Methods, Regression Discontinuity Design

Module Components

Pflichtgruppe:

All Courses are mandatory.

Course Name Type Number Cycle Language SWS VZ
Treatment Effect Analysis VL 71 210 L 1619 SS English 2
Treatment Effect Analysis UE 71 210 L 1618 SS English 2

Workload and Credit Points

Treatment Effect Analysis (VL):

Workload description Multiplier Hours Total
Class attendance 15.0 2.0h 30.0h
Pre/post processing 15.0 2.0h 30.0h
60.0h(~2 LP)

Treatment Effect Analysis (UE):

Workload description Multiplier Hours Total
Class attendance 15.0 2.0h 30.0h
Pre/post processing 15.0 2.0h 30.0h
60.0h(~2 LP)

Course-independent workload:

Workload description Multiplier Hours Total
Exam preparation 1.0 60.0h 60.0h
60.0h(~2 LP)
The Workload of the module sums up to 180.0 Hours. Therefore the module contains 6 Credits.

Description of Teaching and Learning Methods

Lecture and Exercise. Exercises take place at the computer lab where real or simulated data and the statistics software package STATA is used. An introduction to STATA will be given at the beginning of the course.

Requirements for participation and examination

Desirable prerequisites for participation in the courses:

Econometrics - undergraduate level.

Mandatory requirements for the module test application:

1. Requirement
Modul70231 [Statistik I für Wirtschaftswissenschaften] passed
2. Requirement
Modul70232 [Statistik II für Wirtschaftswissenschaften] passed

Module completion

Grading

graded

Type of exam

Written exam

Language

English

Duration/Extent

90 Minutes

Duration of the Module

The following number of semesters is estimated for taking and completing the module:
1 Semester.

This module may be commenced in the following semesters:
Sommersemester.

Maximum Number of Participants

This module is not limited to a number of students.

Registration Procedures

Please note the information on our website.

Recommended reading, Lecture notes

Lecture notes

Availability:  unavailable

Electronical lecture notes

Availability:  unavailable

Literature

Recommended literature
Angrist, Joshua D. & Pischke, Jörn-Steffen (2009). Mostly Harmless Econometrics: An Empiricist's Companio, Princeton University Press
Lee, M.J., 2005, Micro-Econometrics for Policy, Program, and Treatment Effects, Oxford University Press
Schmidt, C. M., Fertig, M. (2007) Empirische Wirtschaftsforschung - Eine Einführung in die Identifikationsproblematik, Springer
Wooldridge, J.M. (2001). Econometric Analysis of Cross Section and Panel Data, MIT Press.
Wooldridge, J.M. (2006). Introductory Econometrics. A Modern Approach, 3e, Thomson South-Western.

Assigned Degree Programs

This module is used in the following Degree Programs (new System):

Verwendungen (2)
Studiengänge: 2 Stupos: 2 Erstes Semester: WS 2019/20 Letztes Semester: offen

This moduleversion is used in the following modulelists:

Students of other degrees can participate in this module without capacity testing.

Miscellaneous

No information