Display language

#40834 / #4

Seit SoSe 2020

English

Machine Learning 1-X

12

Müller, Klaus-Robert

benotet

Schriftliche Prüfung

Zugehörigkeit


Fakultät IV

Institut für Softwaretechnik und Theoretische Informatik

34352000 FG Maschinelles Lernen

No information

Kontakt


MAR 4-1

Montavon, Gregoire

klaus-robert.mueller@tu-berlin.de

Learning Outcomes

The students are able to independently apply methods from machine learning on new data. This includes methods for classification, regression, dimensionality reduction and clustering. Moreover, the module teaches the mathematical skills (probability theory, optimization theory) needed to extend and theoretical analyze machine learning methods.

Content

Probability theory, theory of estimation (e.g. Maximum likelihood, EM algorithm) Methods from Machine Learning: Dimensionality reduction (PCA), Clustering, Supervised learning (e.g. Regression, LDA, SVM, Gaussian processes) Depending on the elective: more detailed knowledge about specific machine learning problems, programming skills, or mathematical foundations.

Module Components

Pflichtgruppe:

All Courses are mandatory.

Course NameTypeNumberCycleLanguageSWSVZ
Maschinelles Lernen IIV0434 L 501WiSeEnglish6

Wahlpflicht:

Please choose courses with 3 credit(s) from the following courses.

Course NameTypeNumberCycleLanguageSWSVZ
Algorithms for brain reading and writingSEMWiSeNo information2
Bayesian LearningVL343 L 8043WiSeNo information2
Big Data: Skalierbares Maschinelles LernenKUWiSeNo information2
Big Data: Skalierbares Maschinelles LernenSEMWiSeNo information2
Boosting and Model AveragingSEMWiSe/SoSeNo information2
Classical Topics in MLSEM0434 L 588WiSeNo information2
Deep Neural NetworksVLWiSe/SoSeNo information2
Machine Learning and Data Management SystemsSEMWiSe/SoSeNo information2
Machine Learning in the SciencesVLSoSeNo information2
Mathematische Grundlagen für Maschinelles LernenKU0434 L 545WiSe/SoSeNo information2
Matlabprogrammierung für ML und DatenanlyseKU0434 L 544WiSe/SoSeNo information2
Pythonprogrammierung für ML und DatenanalyseKU0434 L 543WiSe/SoSeEnglish2
Scientific applications in Machine LearningSEMWiSe/SoSeNo information2

Workload and Credit Points

Maschinelles Lernen I (IV):

Workload descriptionMultiplierHoursTotal
270.0h(~9 LP)
Concepts & Theory15.06.0h90.0h
Exercises15.06.0h90.0h
Programming15.06.0h90.0h

Algorithms for brain reading and writing (SEM):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h

Bayesian Learning (VL):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
No information15.02.0h30.0h
No information15.04.0h60.0h

Big Data: Skalierbares Maschinelles Lernen (KU):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h

Big Data: Skalierbares Maschinelles Lernen (SEM):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h

Boosting and Model Averaging (SEM):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h

Classical Topics in ML (SEM):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
No information15.02.0h30.0h
No information15.04.0h60.0h

Deep Neural Networks (VL):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h

Machine Learning and Data Management Systems (SEM):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
No information15.04.0h60.0h
No information15.02.0h30.0h

Machine Learning in the Sciences (VL):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h

Mathematische Grundlagen für Maschinelles Lernen (KU):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
No information15.02.0h30.0h
No information15.04.0h60.0h

Matlabprogrammierung für ML und Datenanlyse (KU):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
No information15.02.0h30.0h
No information15.04.0h60.0h

Pythonprogrammierung für ML und Datenanalyse (KU):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
No information15.02.0h30.0h
No information15.04.0h60.0h

Scientific applications in Machine Learning (SEM):

Workload descriptionMultiplierHoursTotal
90.0h(~3 LP)
Attendance15.02.0h30.0h
Pre/post processing15.04.0h60.0h
The Workload of the module sums up to 360.0 Hours. Therefore the module contains 12 Credits.

Description of Teaching and Learning Methods

weekly lectures, tutorials, and homeworks

Requirements for participation and examination

Desirable prerequisites for participation in the courses:

Basic knowledge in linear algebra and calculus. Basic knowledge in probability theory. Basic programming knowledge, programming in Python.

Mandatory requirements for the module test application:

1. Requirement
Machine Learning 1-X: Übungsschein Wahlpflichtveranstaltung bestanden

Module completion

Grading

graded

Type of exam

Written exam

Language

English

Duration/Extent

120 min

Duration of the Module

The following number of semesters is estimated for taking and completing the module:
2 Semester.

This module may be commenced in the following semesters:
Winter- und Sommersemester.

Maximum Number of Participants

This module is not limited to a number of students.

Registration Procedures

cf. course webpage

Recommended reading, Lecture notes

Lecture notes

Availability:  unavailable

 

Electronical lecture notes

Availability:  unavailable

 

Literature

Recommended literature
No recommended literature given

Assigned Degree Programs


This module is used in the following Degree Programs (new System):

Studiengang / StuPOStuPOsVerwendungenErste VerwendungLetzte Verwendung
Biomedizinische Technik (M. Sc.)19SoSe 2021SoSe 2023
Computational Engineering Science (Informationstechnik im Maschinenwesen) (M. Sc.)15SoSe 2022SoSe 2023
Computer Engineering (M. Sc.)142SoSe 2020SoSe 2023
Computer Science (Informatik) (M. Sc.)135SoSe 2020SoSe 2023
Elektrotechnik (M. Sc.)121SoSe 2020SoSe 2023
ICT Innovation (M. Sc.)27SoSe 2020SoSe 2023
Information Systems Management (Wirtschaftsinformatik) (M. Sc.)213SoSe 2020SoSe 2023
Physikalische Ingenieurwissenschaft (M. Sc.)28WiSe 2021/22SoSe 2023
Wirtschaftsingenieurwesen (M. Sc.)118SoSe 2020SoSe 2023

Students of other degrees can participate in this module without capacity testing.

Miscellaneous

No information